year 23, Issue 89 (3-2024)                   J. Med. Plants 2024, 23(89): 68-82 | Back to browse issues page

Research code: ...
Ethics code: IR.IUMS.REC.1398.606
Clinical trials code: ...


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousefsani B S, Ghobadi A, Shirani K. Uncovering the neuroprotective powers of Allium sativum: exploring its potential to alleviate malathion- associated Parkinson's-like behavioral symptoms in a rat model. J. Med. Plants 2024; 23 (89) :68-82
URL: http://jmp.ir/article-1-3673-en.html
1- Institute for Studies in Medical History, Persian and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Traditional Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
2- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran , k.shirani@modares.ac.ir
Abstract:   (1090 Views)
Background: Garlic, scientifically known as Allium sativum, has been a revered traditional medicine for millennia, rich in diverse phytochemicals with various medicinal properties, such as antioxidant, anticancer, anti-inflammatory, pain killer, hypoglycemic, antimicrobial, antiviral, and wound-healing properties. Its remarkable therapeutic potential makes garlic a beneficial natural treatment for many health issues. Objective: This research examined the neuroprotective effects of garlic against Malathion (Mal)-associated Parkinson's-like behavioral symptoms in rats. Methods: Animals were categorized into eight groups at random: (1) saline-treated group (control); (2) Mal group (100 mg kg¹); (3) Mal + garlic (50 mg kg¹); (4) Mal + garlic (100 mg kg¹); (5) Mal + garlic (150 mg kg¹); (6) Mal + L-DOPA (10 mg kg¹); (7) garlic (150 mg kg¹); and (8) polyethylene glycol (PEG) group (L-DOPA vehicle). Treatment lasted 28 days, followed by behavioral assessments and analyses of acetylcholinesterase (AChE) activity, malondialdehyde (MDA) level, antioxidants levels, and proinflammatory cytokines in the striatum. Results: Mal exposure caused neurobehavioral toxicity with increased MDA, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), alongside decreased GSH concentration and AChE activity. Garlic treatment successfully mitigated these effects. Conclusion: The findings suggest that garlic may have a favorable impact in treating Parkinson's disease by enhancing antioxidant levels and mitigating oxidative stress and inflammatory processes, countering the harmful effects of pesticides like Mal. Additional studies necessary to thoroughly explore garlic's protective benefits in this area.
Full-Text [PDF 1137 kb]   (359 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2024/05/29 | Accepted: 2024/08/26 | Published: 2024/09/11

References
1. Yousefsani BS, Ghobadi A, Dadmehr M and Shirani K. Castor Oil. A natural remedy with promising potential for Parkinson 's disease prevention. Jundishapur. J. Nat. Pharm. Prod. 2024; 19(1): e143882. [DOI:10.5812/jjnpp-143882]
2. Santiago JA and Potashkin JA. Physical activity and lifestyle modifications in the treatment of neurodegenerative diseases. Front. Aging. Neurosci. 2023; 15: 1185671. [DOI:10.3389/fnagi.2023.1185671]
3. Xu L and Pu J. Alpha-Synuclein in Parkinson 's disease: from Pathogenetic dysfunction to potential clinical Application. Parkinsons. Dis. 2016; 2016: 1720621. [DOI:10.1155/2016/1720621]
4. Váradi C. Clinical features of Parkinson 's disease. The evolution of critical symptoms. Biology (Basel). 2020; 9(5): 103. [DOI:10.3390/biology9050103]
5. Radad K, Moldzio R, Krewenka C, Kranner B and Rausch W-D. Pathophysiology of non-motor signs in Parkinson 's disease: some recent uparkinson ating with brief presentation. Explor. Neuroprot. Ther. 2023; 3: 24-46. [DOI:10.37349/ent.2023.00036]
6. Gouda NA, Elkamhawy A and Cho J. Emerging Therapeutic strategies for Parkinson 's disease and future prospects: A 2021 update. Biomedicines 2022; 10(2): 371. [DOI:10.3390/biomedicines10020371]
7. Shirani K, Hassani FV, Azar-Khiavi KR, Samie Moghaddam Z and Karimi GhR. Determination of methanol in Iranian herbal distillates. J. Complement. Integr. Med. 2016; 13(2): 123-7. [DOI:10.1515/jcim-2015-0041]
8. Shang A, Cao SY, Xu XY, Gan R-Y, Tang G-Y, Corke H, Mavumengwana V and Li H-B. Bioactive compounds and biological functions of Garlic (Allium sativum L.). Foods 2019; 8(7): 246. [DOI:10.3390/foods8070246]
9. Petrovska BB and Cekovska S. Extracts from the history and medical properties of Garlic. Pharmacogn. Rev. 2010; 4(7): 106-10. [DOI:10.4103/0973-7847.65321]
10. Verma T, Aggarwal A, Dey P, Chauhan AK, Rashid S, Chen K-T and Sharma R. Medicinal and therapeutic properties of garlic, garlic essential oil, and garlic-based snack food: An updated review. Front. Nutr. 2023; 10. [DOI:10.3389/fnut.2023.1120377]
11. Bigham M, Mohammadipour A, Hosseini M, Malvandi AM, Ebrahimzadeh-Bideskan A. Neuroprotective effects of garlic extract on dopaminergic neurons of substantia nigra in a rat model of Parkinson 's disease: motor and non-motor outcomes. Metab. Brain. Dis. 2021; 36(5): 927-937. [DOI:10.1007/s11011-021-00705-8]
12. Alavi Shirazi A, Mohammad Hadi SMH and Esfahani MM. Makhz al-Adawieh. Tehran, Iran: Iran University of Medical Sciences. Institute of Medical History Studies. Islamic and complementary medicine. 1387, P. 288. [Persian].
13. Mohammadzadeh L, Hosseinzadeh H, Abnous K and Razavi BM. Neuroprotective potential of crocin against Mal-induced motor deficit and neurochemical alterations in rats. Environ. Sci. Pollut. Res. Int. 2018; 25(5): 4904-4914. [DOI:10.1007/s11356-017-0842-0]
14. Kraeuter A-K, Guest PC and Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol. Biol. 2019; 1916: 99-103. [DOI:10.1007/978-1-4939-8994-2_9]
15. Costall B and Naylor RJ. On catalepsy and catatonia and the predictability of the catalepsy test for neuroleptic activity. Psychopharmacologia. 1974; 34(3): 233-41. [DOI:10.1007/BF00421964]
16. Yousefsani BS, Bahrami B, Qobadi A, et al. The selective cytotoxicity of the hydroalcoholic extract of Santalum Album Linn wood on A375 and SK-MEL-3 human malignant Melanoma cells: Iran. J. Pharmaceutical. Sci. 2022; 18(2).
17. Yousefsani BS, Salimi A, Imani F, Ramezani M, Shirani K, Seydi E and Pourahmad J. Risperidone toxicity on human blood lymphocytes in nano molar concentrations. Drug. Res. 2022; 72(6): 343-349. [DOI:10.1055/a-1830-8701]
18. Shirani K, Iranshahi M, Askari VR, Gholizadeh Z, Attaran Zadeh A, Zeinali M and Vahdati Hassani F. Comparative evaluation of the protective effects of oral administration of auraptene and umbelliprenin against CFA-induced chronic inflammation with polyarthritis in rats. Biomed. Pharmacother. 2021; 139: 111635. [DOI:10.1016/j.biopha.2021.111635]
19. Nikkhah E, Shirani K, Rezaee R and Karimi GhR. Protective effects of taurine against hepatotoxicity induced by pharmaceuticals and environmental chemicals. Toxicol. Environ. Chem. 2021; 103(1): 56-84. [DOI:10.1080/02772248.2021.1892113]
20. Recchia A, Rota D, Debetto P, Peroni D, Guidolin D, Negro A, Skaper SD and Giusti P. Generation of a α-synuclein-based rat model of Parkinson 's disease. Neurobiol. Dis. 2008; 30(1): 8-18. [DOI:10.1016/j.nbd.2007.11.002]
21. Sedelis M, Schwarting RK and Huston JP. Behavioral phenotyping of the MPTP mouse model of Parkinson 's disease. Behav. Brain. Res. 2001; 125(1-2): 109-25. [DOI:10.1016/S0166-4328(01)00309-6]
22. Prasad EM and Hung S-Y. Behavioral tests in Neurotoxin-Induced animal models of Parkinson's disease. Antioxidants (Basel). 2020; 16; 9(10): 1007. [DOI:10.3390/antiox9101007]
23. Duty S and Jenner P. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol. 2011; 164(4): 1357-91. [DOI:10.1111/j.1476-5381.2011.01426.x]
24. Tartaglione AM, Venerosi A and Calamandrei G. Early-life toxic insults and onset of sporadic neurodegenerative diseases-an overview of experimental studies. Curr. Top. Behav. Neurosci. 2016; 29: 231-264. [DOI:10.1007/7854_2015_416]
25. Jamshidi AH, Eghbalian F, Mahroozade S, Mohammadi Kenari H, Ghobadi A and Yousefsani BS. Recommended natural products in Alzheimer's disease based on traditional Persian medicine. J. Med. Plants 2020; 19(75): 17-29. [DOI:10.29252/jmp.19.75.17]
26. Nagatsu T and Sawada M. L-dopa therapy for Parkinson 's disease: past, present, and future. Parkinsonism. Relat. Disord. 2009; 15(Supp. 1): S3-8. [DOI:10.1016/S1353-8020(09)70004-5]
27. Kamranfar F, Jaktaji RP, Shirani K, Jamshidi AH, Samiei F, Arjmand A, Khoramjouy M, Faizi M, Pourahmad J. Protective effect of a standardized Allium jesdianum extract in an Alzheimer's disease induced rat model. Neurosci. Lett. 2023; 815: 137491. [DOI:10.1016/j.neulet.2023.137491]
28. Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM and Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol. 2013; 11(3): 315-35.
29. Nakamagoe K, Watanabe M, Takeda T, Mizutani T and Tamaoka A. Parkinsonism with organophosphate poisoning. BMJ Case Rep. 2009; 2009: bcr0420091766. [DOI:10.1136/bcr.04.2009.1766]
30. Dias V, Junn E and Mouradian MM. The role of oxidative stress in Parkinson 's disease. J. Parkinsons. Dis. 2013; 3(4): 461-91. [DOI:10.3233/JPD-130230]
31. Chakraborty S, Bornhorst J, Nguyen TT and Aschner M. Oxidative stress mechanisms underlying Parkinson 's disease-associated neurodegeneration in C. elegans. Int. J. Mol. Sci. 2013; 14(11): 23103-28. [DOI:10.3390/ijms141123103]
32. Liu H, Mao P, Wang J, Wang T, Xie C-H. Allicin protects PC12 cells against 6-OHDA-induced oxidative stress and Mitochondrial dysfunction via regulating Mitochondrial dynamics. Cell. Physiol. Biochem. 2015; 36: 966-979. [DOI:10.1159/000430271]
33. Rojas P, Serrano-García N, Medina-Campos ON, Pedraza-Chaverri J, Maldonado PD and Ruiz-Sánchez E. S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced parkinson ism in mice. J. Nutr. Biochem. 2011; 22(10): 937-944. [DOI:10.1016/j.jnutbio.2010.08.005]
34. Khovarnagh N and Seyedalipour B. Antioxidant, histopathological and biochemical outcomes of short-term exposure to acetamiprid in liver and brain of rat: The protective role of N-acetylcysteine and S-methylcysteine. Saudi. Pharm. J. 2021; 29(3): 280-289. [DOI:10.1016/j.jsps.2021.02.004]
35. Shao F, Wang X, Wu H, Wu Q and Zhang J. Microglia and neuroinflammation: Crucial pathological mechanisms in traumatic brain Injury-Induced neurodegeneration. Front. Aging Neurosci. 2022; 14: 825086. [DOI:10.3389/fnagi.2022.825086]
36. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021; 33(3): 127-148. [DOI:10.1093/intimm/dxaa078]
37. Ban JO, Oh JH, Kim TM, Kim Dj, Jeong H-S, Han SB and Hong JT. Anti-inflammatory and arthritic effects of thiacremonone, a novel sulfur compound isolated from garlic via inhibition of NF-kappaB. Arthritis. Res. Ther. 2009; 11(5): R145. [DOI:10.1186/ar2819]
38. Lin G, Lee Y-J, Choi D-Y, Han SB, Jung JK, Hwang BY, Moon DC, Kim Y, Lee MK, Oh K-W, Jeong HS, Leem JY, Shin HK, Lee JH and Hong JT. Anti-amyloidogenic effect of thiacremonone through anti-inflamation in vitro and in vivo models. J. Alzheimers. Dis. 2012; 29(3): 659-676. [DOI:10.3233/JAD-2012-111709]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb