year 23, Issue 89 (3-2024)                   J. Med. Plants 2024, 23(89): 32-46 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shirooie S, Jasemi S K, Babaei G, Morovati M R, Ghanbari-Movahed M, Barzegar S et al . Naringenin may prevent morphine-induced tolerance via inhibiting glycogen synthase kinase-3beta activity in mice. J. Med. Plants 2024; 23 (89) :32-46
URL: http://jmp.ir/article-1-3653-en.html
1- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
2- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
3- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
4- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran , mh_farzaei@kums.ac.ir
Abstract:   (376 Views)
Background: Opioids are essential for pain treatment, but their long-term usage results in tolerance. Naringenin, a natural flavonoid found in fruit, inhibits the enzyme that causes opioid tolerance, making it effective in treating neurodegenerative diseases. Objective: In this study, we evaluate the role of naringenin in morphine-induced tolerance and the glycogen synthase kinase-3beta (GSK-3β) enzyme. Methods: To induce tolerance to morphine in mice, repeated injections of morphine were performed for five days, and on the fifth day, a single dose of morphine was injected intraperitoneally. Pain tests (hot plate and tail flick) were performed on the first, third, and fifth days of injections. To evaluate the impact of naringenin, 45 minutes before each morphine injection, doses of 25, 50, and 100 mg/kg were administrated orally. On the last day, brain tissues were checked for biochemical factors and changes in the phosphorylation of the enzyme by the immunohistochemical method. Results: The results indicated that the simultaneous use of naringenin significantly increases the analgesia delay compared to the morphine group (P < 0.001) on the third and fifth days. Naringenin at all concentrations decreased the nitrite level caused by morphine. It showed protective effects on morphine tolerance (P < 0.001) in the p-GSSer640 immunohistochemical assay and reduced the phosphorylation of p-GSSer640 by GSK-3β, activated by chronic morphine administration. Conclusion: Based on the results of the present study, the beneficial effect of naringenin on the GSK enzyme in morphine-induced tolerance is confirmed, but more studies are needed to investigate its impact mechanism.
Full-Text [PDF 834 kb]   (94 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2024/04/14 | Accepted: 2024/07/6 | Published: 2024/09/11

References
1. Bugada D, Lorini LF, Fumagalli R and Allegri M. Genetics and opioids: towards more appropriate prescription in cancer pain. Cancers (Basel). 2020; 12(7): 1951. [DOI:10.3390/cancers12071951]
2. von Oelreich E, Campoccia Jalde F, Rysz S and Eriksson J. Opioid use following cardio-thoracic intensive care: risk factors and outcomes: a cohort study. Scientific Reports 2024; 14(1): 20. [DOI:10.1038/s41598-023-50508-3]
3. Neumann VE. Comparative Analysis of Opioids as Substrates and Inhibitors of the Human Organic Cation Transporter 1 (OCT1). 2020, Dissertation, Göttingen, Georg-August Universität, 2020.
4. Singleton JH, Abner EL, Akpunonu PD and Kucharska‐Newton AM. Association of nonacute opioid use and cardiovascular diseases: a scoping review of the literature. JAHA. 2021; 10(13): e021260. [DOI:10.1161/JAHA.121.021260]
5. Dydyk AM JN, Jain NK and Gupta M. Opioid Use Disorder, Dydyk AM, Jain NK, Gupta M. Opioid Use Disorder. [Updated 2023 Apr 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553166/. 2023.
6. Zhou J, Ma R, Jin Y, Fang J, Du J, Shao X, Liang Y and Fang J. Molecular mechanisms of opioid tolerance: From opioid receptors to inflammatory mediators. Experimental and Therapeutic Medicine. 2021; 22(3): 1-8. [DOI:10.3892/etm.2021.10437]
7. Armstrong A. Retinoic Acid, Insulin, and Cycloheximide Alter Glycogen Homeostasis in Differentiating L6 Myoblasts. 2023.
8. Kitanaka J, Kitanaka N, Tomita K, Hall FS, Igarashi K, Uhl GR and Sato T. Glycogen synthase kinase-3 inhibitors suppress morphine-induced Straub's tail via a centrally acting mechanism. Research Square. 2022. 1-17. [DOI:10.21203/rs.3.rs-2278556/v1]
9. Sharma AK, Bhatia S, Al-Harrasi A, Nandave M and Hagar H. Crosstalk between GSK-3β-actuated molecular cascades and myocardial physiology. Heart Fail. Rev. 2021; 26(6): 1495-1504. [DOI:10.1007/s10741-020-09961-9]
10. Okuyama Y, Jin H, Kokubun H and Aoe T. Pharmacological chaperones attenuate the development of opioid tolerance. IJMS. 2020. 21(20): 7536. doi: 10.3390/ijms21207536. [DOI:10.3390/ijms21207536]
11. Dorval L. FGF21 Is a Potential Therapeutic for Morphine Preference and Dependence. 2021. University of Rochester.
12. Liao W-W, Tsai S-Y, Liao C-C, Chen K-B, Yeh G-C, Chen J-Y and Wen Y-R. Coadministration of glycogen-synthase kinase 3 inhibitor with morphine attenuates chronic morphine-induced analgesic tolerance and withdrawal syndrome. Journal of the Chinese Medical Association. 2014; 77(1): 31-37. [DOI:10.1016/j.jcma.2013.09.008]
13. Houshmand GhR, Pourasghar M, Shiran MR, Firozjae AA, Goudarzi M, Manouchehr F, Shirzad Sh, Assadpour S, Nikbakht J and Ghorbanzadeh B. Simvastatin prevents morphine antinociceptive tolerance and withdrawal symptoms through antioxidative effect and nitric oxide pathway in mice. Behav. Brain Res. 2021; 402: 113104. [DOI:10.1016/j.bbr.2020.113104]
14. Motallebi, M., et al., Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci. 2022; 305: 120752. [DOI:10.1016/j.lfs.2022.120752]
15. Rehman K, Khan II, Akash MSH, Jabeen K and Haider K. Naringenin downregulates inflammation‐mediated nitric oxide overproduction and potentiates endogenous antioxidant status during hyperglycemia. J. Food Biochem. 2020; 44(10): e13422. [DOI:10.1111/jfbc.13422]
16. Fakhri S, Sabouri S, Kiani A, Farzaei MH, Rashidi Kh, Mohammadi-Farani A, Mohammadi-Noori E and Abbaszadeh F. Intrathecal administration of naringenin improves motor dysfunction and neuropathic pain following compression spinal cord injury in rats: relevance to its antioxidant and anti-inflammatory activities. Korean J. Pain. 2022; 35(3): 291-302. [DOI:10.3344/kjp.2022.35.3.291]
17. Yang, W., et al., Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurol. Sci. 2014; 35(5): 741-751. [DOI:10.1007/s10072-013-1594-3]
18. Dambisya YM and Lee T.L. Role of nitric oxide in the induction and expression of morphine tolerance and dependence in mice. British J. Pharmacol. 1996; 117(5): 914-918. [DOI:10.1111/j.1476-5381.1996.tb15280.x]
19. Shirooie S, Esmaeili J, Sureda A, Esmaeili N, Saffari PM, Yousefi-Manesh H and Dehpour AR. Evaluation of the effects of metformin administration on morphine tolerance in mice. Neuroscience Letters. 2020; 716: 134638. [DOI:10.1016/j.neulet.2019.134638]
20. Pehlivan DY, Kara AY, Koyu A and Simsek F. Enhancing fentanyl antinociception and preventing tolerance with α-2 adrenoceptor agonists in rats. Behav. Brain Res. 2024; 457: 114726. [DOI:10.1016/j.bbr.2023.114726]
21. Nakhaee S, Dastjerdi M, Roumi H, Omid Mehrpour and Farrokhfall Kh. N-acetylcysteine dose-dependently improves the analgesic effect of acetaminophen on the rat hot plate test. BMC Pharmacol and Toxicol. 2021; 22(4): 1-7. [DOI:10.1186/s40360-020-00469-4]
22. Vargas-Maya NI, Padilla-Vaca F, Romero-González OE, Rosales-Castillo EAS, Rangel-Serrano Á, Arias-Negrete S and Franco B. Refinement of the Griess method for measuring nitrite in biological samples. J. Microbiol. Methods. 2021; 187: 106260. [DOI:10.1016/j.mimet.2021.106260]
23. Van Regenmortel, MHV. and Dubs M.-C. Serological procedures. Diagnosis of plant virus diseases, 2019, p: 159-214. [DOI:10.1201/9781351071352-7]
24. Bertinetto C, Engel J and Jansen J. ANOVA simultaneous component analysis: A tutorial review. Analytica Chimica Acta: X. 2020; 6: 100061. [DOI:10.1016/j.acax.2020.100061]
25. Fürst S, Zádori ZS, Zádor F, Király K, Balogh M, László SB, Hutka B, Mohammadzadeh A, Calabrese Ch, Galambos AR, Riba P, Romualdi P, Benyhe S, Timár J, Schmidhammer H, Spetea M and Al-Khrasani M. On the role of peripheral sensory and gut mu opioid receptors: Peripheral analgesia and tolerance. Molecules. 2020; 25(11): 2473. [DOI:10.3390/molecules25112473]
26. Alifarsangi A, Esmaeili-Mahani S, Sheibani V and Abbasnejad M. The citrus flavanone naringenin prevents the development of morphine analgesic tolerance and conditioned place preference in male rats. Am. J. Drug Alcohol Abuse. 2021; 47(1): 43-51. [DOI:10.1080/00952990.2020.1813296]
27. Liu DQ, Zhou YQ and Feng Gao F. Targeting Cytokines for Morphine tolerance: A narrative review. Curr. Neuropharmacol. 2019; 17(4): 366-376. [DOI:10.2174/1570159X15666171128144441]
28. Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J and Kotli 'nska J. The mechanisms involved in morphine addiction: an overview. Int. J. Mol. Sci. 2019; 20(17): 4302. [DOI:10.3390/ijms20174302]
29. Nezamoleslami Sadaf, Sheibani M, Mumtaz F, Esmaeili J, Shafaroodi H and Dehpour AR. Lithium reverses the effect of opioids on eNOS/nitric oxide pathway in human umbilical vein endothelial cells. Molecular Biology Reports. 2020; 47(9): 6829-6840. [DOI:10.1007/s11033-020-05740-9]
30. Jall S, Angelis MD, Lundsgaard AM, Fritzen AM, Nicolaisen TS, Klein AB, Novikoff A, Sachs S, Richter EA, Kiens B, Schramm KW, Tschöp MH, Stemmer K, Clemmensen Ch, Müller TD and Kleinert M. Pharmacological targeting of α3β4 nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia. 2020; 63(6): 1236-1247. [DOI:10.1007/s00125-020-05117-4]
31. Lin ChH, Hsieh YS, Sun YC, Huang WH, Chen ShL, Weng ZK, Lin TH, Wu YR, Chang KH, Huang HJ, Lee GC, Hsieh-Li HM and Lee-Chen GJ. Virtual screening and testing of GSK-3 inhibitors using human SH-SY5Y cells expressing Tau folding reporter and mouse hippocampal primary culture under Tau cytotoxicity. Biomol. Ther (Seoul). 2023; 31(1): 127-138. [DOI:10.4062/biomolther.2022.035]
32. Chauhan N, Paliwal S, Jain S, Verma K, Paliwal S and Sharma S. GSK-3β and its Inhibitors in Alzheimer's Disease: A Recent Update. Mini Rev. Med. Chem. 2022; 22(22): 2881-2895. [DOI:10.2174/1389557522666220420094317]
33. Mohamadian M, Fallah H, Ghofrani-Jahromi Z, Rahimi-Danesh M, Shokouhi Qare Saadlou MS and Vaseghi S. Mood and behavior regulation: interaction of lithium and dopaminergic system. Naunyn-Schmiedeberg's Archives of Pharmacology. 2023; 396 (Suppl 3): 1-21. [DOI:10.1007/s00210-023-02437-1]
34. Atoki AV, Aja PM, Shinkafi TS, Ondari EN and Awuchi ChG. Naringenin: its chemistry and roles in neuroprotection. Nutr. Neurosci. 2023; 637-666. [DOI:10.1080/1028415X.2023.2243089]
35. Li L, Lin Zh, Yuan J, Li P, Wang Q, Cho N, Wang Y and Lin Z. The neuroprotective mechanisms of naringenin: Inhibition of apoptosis through the PI3K/AKT pathway after hypoxic-ischemic brain damage. J. Ethnopharmacol. 2024; 318: 116941. [DOI:10.1016/j.jep.2023.116941]
36. Zhou Y, Cai S, Moutal A, Yu J, Gómez K, Madura CL, Shan Z, Pham NYN, Serafini MJ, Dorame A, Scott DD, François-Moutal L, Perez-Miller S, Patek M, Khanna M and Khanna R. The natural flavonoid naringenin elicits analgesia through inhibition of NaV1. 8 voltage-gated sodium channels. ACS Chem. Neurosci. 2019; 10(12): 4834-4846. [DOI:10.1021/acschemneuro.9b00547]
37. Li DY, Gao ShJ, Sun J, Zhang LQ, Wu JY, Song FH, Liu DQ, Zhou YQ and Mei W. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural Regen. Res. 2023; 18(5): 996-1003. [DOI:10.4103/1673-5374.355748]
38. Anbar M and Gratt BM. Role of nitric oxide in the physiopathology of pain. JPSM. 1997; 14(4): p. 225-254. [DOI:10.1016/S0885-3924(97)00178-4]
39. Afridi B, Khan H, Akkol EK and Aschner M. Pain perception and management: where do we stand? Curr. Mol. Pharmacol. 2021; 14(5): 678-688. [DOI:10.2174/1874467213666200611142438]
40. Zamanian G, Shayan M, Rahimi N, Bahremand T, Shafaroodi H, Ejtemaei-Mehr Sh, Aghaei I, Dehpour AR. Interaction of morphine tolerance with pentylenetetrazole-induced seizure threshold in mice: The role of NMDA-receptor/NO pathway. Epilepsy Behav. 2020; 112: 107343. [DOI:10.1016/j.yebeh.2020.107343]
41. Wolińska R, Kleczkowska P, de Cordé-Skurska A , Poznański P, Sacharczuk M, Mika J and Bujalska-Zadrożny M. Nitric oxide modulates tapentadol antinociceptive tolerance and physical dependence. Eur. J. Pharmacol. 2021; 907: 174245. [DOI:10.1016/j.ejphar.2021.174245]
42. Hassanipour M, Rahimi N, Rajai N, Amini-Khoei H, Ejtemaei Mehr Sh, Momeny M, Heidari M and Dehpour AR. The Expression and Function of Nitric Oxide Synthase Enzyme in Atorvastatin Effects on Morphine-Induced Dependence in Mice. Archives of Neuroscience, 2021; 8(3): e117122. [DOI:10.5812/ans.117122]
43. Cuzzocrea S, Crisafulli C, Mazzon E, Esposito E, Muià C, Abdelrahman M, Di Paola R and Thiemermann C. Inhibition of glycogen synthase kinase-3β attenuates the development of carrageenan‐induced lung injury in mice. Br. J. Pharmacol. 2006; 149(6): 687-702. [DOI:10.1038/sj.bjp.0706902]
44. Ong, WY, Stohler CS and Herr DR. Role of the prefrontal cortex in pain processing. Mol. Neurobiol. 2019; 56(2): 1137-1166. [DOI:10.1007/s12035-018-1130-9]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb