year 22, Issue 87 (12-2023)                   J. Med. Plants 2023, 22(87): 26-38 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khahan-Yazdi I, Shabani M, Tajvidi-Monfared M, Vahidi Emami H, Mojab F, Shams ‎ S et al . Effectiveness of medicinal plant essential oils on drug-resistant bacteria in Iran: A systematic review. J. Med. Plants 2023; 22 (87) :26-38
1- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
2- Department of Microbiology, Faculty of Sciences, University of Mazandaran, Babolsar, Iran
3- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Iran
4- Department of Pharmacognosy, Pharmaceutical Sciences Research Center, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
6- Spiritual Health Research Center, Department of Public Health, School of Health, Qom University of Medical Sciences, Qom, Iran ,
Abstract:   (1042 Views)
Background: The efficacy of common antibiotics has been hindered by the emergence of drug resistance, including multidrug resistance (MDR). As a result, there is a growing interest in exploring alternative treatments for drug-resistant infections. One promising avenue is the use of herbal medicine, which possesses antimicrobial properties and may serve as a viable supplement or alternative to conventional antibiotics. Objective: This study aimed to determine the effectiveness of plant essential oils in Iran against drug-resistant bacteria. Methods: In this systematic review, we searched for keywords including herbal medicine, essential oil, Acinetobacter spp, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus species in Scopus, PubMed, Web of Science, and internal databases. Articles published up to October 4, 2023, were considered without any time limit. Results: The results showed that the majority of studies conducted were related to thyme, and the most tested bacterial species were methicillin-resistant Staphylococcus aureus (MRSA) strains. Thyme exhibited the highest antibacterial activity, with the lowest minimum inhibitory concentration (MIC) equal to 0.31 µg/ml, followed by Oliveria decumbens with a MIC of 0.625 µg/ml. Conclusion: Herbal medicines may offer an efficient treatment option for antibiotic-resistant bacteria. However, further studies are needed to investigate potential adverse effects, antibacterial properties, and possible synergistic effects with other medicinal plants.
Full-Text [PDF 650 kb]   (698 Downloads)    
Type of Study: Review | Subject: Medicinal Plants
Received: 2023/07/26 | Accepted: 2023/11/29 | Published: 2023/12/31

1. Azimi T, Maham S, Fallah F, Azimi L and Gholinejad Z. Evaluating the antimicrobial resistance patterns among major bacterial pathogens isolated from clinical specimens taken from patients in Mofid children's hospital, Tehran, Iran: 2013-2018. Infect Drug Resist. 2019; 12: 2089-102. [DOI:10.2147/IDR.S215329]
2. Parchem NL, Bauer KA, Cook CH, Mangino JE, Jones CD, Porter K and Murphy CV. Colistin combination therapy improves microbiologic cure in critically ill patients with multi-drug resistant gram-negative pneumonia. Eur. J. Clin. Microbiol. Infect. Dis. 2016; 35(9): 1433-9. [DOI:10.1007/s10096-016-2681-1]
3. Tosi M, Roat E, De Biasi S, Munari E, Venturelli S, Coloretti I, Biagioni E, Cossarizza A and Girardis M. Multidrug resistant bacteria in critically ill patients: a step further antibiotic therapy. JECCM. 2018; 2: 105-13. [DOI:10.21037/jeccm.2018.11.08]
4. Serwecińska L. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water. 2020; 12(12): 3313. [DOI:10.3390/w12123313]
5. Sánchez-López J and Cantón R. Current status of ESKAPE microorganisms in Spain: epidemiology and resistance phenotypes. Rev. Esp. Quimioter. 2019; 32 (Suppl 2): 27-31.
6. Rosenthal VD. International Nosocomial Infection Control Consortium (INICC) resources: INICC multidimensional approach and INICC surveillance online system. Am. J. Infect Control. 2016; 44(6): e81-90. [DOI:10.1016/j.ajic.2016.01.005]
7. Danquah CA, Tetteh M, Amponsah IK, Mensah AY, Buabeng KO, Gibbons S and Bhakta S. Investigating Ghanaian Allium species for anti-infective and resistance-reversal natural product leads to mitigate multidrug-resistance in tuberculosis. Antibiotics. 2021; 10(8): 902. [DOI:10.3390/antibiotics10080902]
8. Miró-Canturri A, Ayerbe-Algaba R and Smani Y. Drug repurposing for the treatment of bacterial and fungal infections. Front Microbiol. 2019; 10: 41. [DOI:10.3389/fmicb.2019.00041]
9. Theuretzbacher U and Piddock LJV. Non-traditional antibacterial therapeutic options and challenges. Cell Host Microbe. 2019; 26(1): 61-72. [DOI:10.1016/j.chom.2019.06.004]
10. Anand U, Nandy S, Mundhra A, Das N, Pandey DK and Dey A. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. Drug Resist Updat. 2020; 51: 100695. [DOI:10.1016/j.drup.2020.100695]
11. Banadkoki AZ, Kouhsari E, Amirmozafari N, Roudbary M and Boujary Nasrabadi MR. Antibacterial, antifungal and cytotoxic activities of some medicinal plants against multidrug resistance pathogens. Rev. Med. Microbiol. 2018; 29(4): 182-8. [DOI:10.1097/MRM.0000000000000146]
12. Bataineh SMB, Tarazi YH and Ahmad WA. Antibacterial efficacy of some medicinal plants on multidrug resistance bacteria and their toxicity on eukaryotic cells. Appl. Sci. 2021; 11(18): 8479. [DOI:10.3390/app11188479]
13. Khameneh B, Iranshahy M, Soheili V and Fazly Bazzaz BS. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob. Resist. Infect. Control. 2019; 8(1): 118. [DOI:10.1186/s13756-019-0559-6]
14. Newman DJ. Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J. Med. Chem. 2008; 51(9): 2589-99. [DOI:10.1021/jm0704090]
15. Amiri R and Fozouni L. Antibacterial effects of Peganum harmala seed extracts on drug-resistant clinical isolates of Acinetobacter baumannii in north of Iran. Jundishapur J. Nat. Pharm. Prod. 2020; 15(2). e92426. [DOI:10.5812/jjnpp.92426]
16. Saki M, Seyed-Mohammadi S, Abbasi Montazeri E, Siahpoosh A, Moosavian M and Latifi SM. In vitro antibacterial properties of Cinnamomum zeylanicum essential oil against clinical extensively drug-resistant bacteria. Eur. J. Integr. Med. 2020; 37: 101146. [DOI:10.1016/j.eujim.2020.101146]
17. Asiaei EO, Moghimipour E and Fakoor MH. Evaluation of antimicrobial activity of Eucalyptus camaldulensis essential oil against the growth of drug-resistant bacteria. Jundishapur J. Nat. Pharm. Prod. 2018; 13(4). [DOI:10.5812/jjnpp.65050]
18. Moher D, Liberati A, Tetzlaff J, Altman DG and PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009; 151(4): 264-9. [DOI:10.7326/0003-4819-151-4-200908180-00135]
19. AlShwaimi E, Bogari D, Ajaj R, Al-Shahrani S, Almas K and Majeed A. In vitro antimicrobial effectiveness of root canal sealers against Enterococcus faecalis: a systematic review. J. Endod. 2016; 42(11): 1588-97. [DOI:10.1016/j.joen.2016.08.001]
20. Sarkis-Onofre R, Skupien JA, Cenci MS, Moraes RR and Pereira-Cenci T. The role of resin cement on bond strength of glass-fiber posts luted into root canals: a systematic review and meta-analysis of in vitro studies. Oper. Dent. 2014; 39(1): E31-E44. [DOI:10.2341/13-070-LIT]
21. Montagner A, Sarkis-Onofre R, Pereira-Cenci T and Cenci MS. MMP inhibitors on dentin stability: a systematic review and meta-analysis. J. Dent. Res. 2014; 93(8): 733-43. [DOI:10.1177/0022034514538046]
22. Eftekhar F, Isazadeh H, Yousefzadi M, Hadian J and Nejad Ebrahimi S. Chemical composition and antibacterial activity of Zataria multiflora essential oil. J. Essent. Oil Bear. Plants. 2012; 15(3): 461-6. [DOI:10.1080/0972060X.2012.10644073]
23. Eftekhar F, Zamani S, Yusefzadi M, Hadian J and Nejad Ebrahimi S. Antibacterial activity of Zataria multiflora Boiss essential oil against extended spectrum β lactamase produced by urinary isolates of Klebsiella pneumonia. Jundishapur J. Microbiol. 2011; 4(SUPPL. 1): S43-S9.
24. Hajimehdipoor H, Samadi N, Mozafarian V, Rahimifard N, Shoeybi Sh and Pirali Hamedani M. Chemical composition and antimicrobial activity of Oliveria decumbens volatile oil from west of Iran. J. Med. Plants. 2010; 9(Supp. 6): 39-44.
25. Asghar Heydari M, Mobini M and Salehi M. The synergic activity of Eucalyptus leaf oil and silver nanoparticles against some pathogenic bacteria. Arch. Pediatr. Infect. Dis. 2017; 5(4). e61654. [DOI:10.5812/pedinfect.61654]
26. Hosseinkhani F, Jabalameli F, Banar M, Abdellahi N, Taherikalani M, Leeuwen WBv and Emaneini M. Monoterpene isolated from the essential oil of Trachyspermum ammi is cytotoxic to multidrug-resistant Pseudomonas aeruginosa and Staphylococcus aureus strains. Rev. Soc. Bras. Med. Trop. 2016; 49(2): 172-6. [DOI:10.1590/0037-8682-0329-2015]
27. Islamieh DI, Goudarzi H, Khaledi A, Afshar D and Esmaeili D. Reduced efflux pumps expression of Pseudomonas aeruginosa with Satureja khuzistanica essential oil. Iran. J. Med. Sci. 2020; 45(6): 463-8.
28. Khanavi M, Farahanikia B, Rafiee F, Dalili D, Safaripour E, Ajani Y and Samadi N. Reversal of resistance in mrsa strains by Thymus kotschyanus essential oil. J. Essent. Oil Bear. Plants. 2011; 14(6): 684-92. [DOI:10.1080/0972060X.2011.10643990]
29. Mahboubi M and Bidgoli FG. Antistaphylococcal activity of Zataria multiflora essential oil and its synergy with vancomycin. Phytomedicine. 2010; 17(7): 548-50. [DOI:10.1016/j.phymed.2009.11.004]
30. Miran M, Monsef Esfahani HR, Moridi Farimani M, Ali Ahmadi A and Nejad Ebrahimi S. Essential oil composition and antibacterial activity of Levisticum officinale Koch at different developmental stages. J. Essent. Oil Bear. Plants. 2018; 21(4): 1051-5. [DOI:10.1080/0972060X.2018.1507759]
31. Tohidpour A, Sattari M, Omidbaigi R, Yadegar A and Nazemi J. Antibacterial effect of essential oils from two medicinal plants against methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine. 2010; 17(2): 142-5. [DOI:10.1016/j.phymed.2009.05.007]
32. Saidi M, Sadeghifard N, Kazemian H, Sekawi Z, Badakhsh B, Friadian S and Ghafourian S. Ex vivo evaluation of Thymus daenensis as an antioxidant and antibacterial medicinal herb. Drug Res. (Stuttg). 2016; 66(12): 657-9. [DOI:10.1055/s-0042-113457]
33. Satarian F, Mahmoodzadeh Hosseini H, Ghadaksaz A, Amin M and Imani Fooladi AA. Multi-drug resistant clinical Pseudomonas aeruginosas inhibited by Ferula gummosa Boiss. Recent Pat. Antiinfect Drug Discov. 2018; 13(1): 89-99. [DOI:10.2174/1574891X13666180426163427]
34. Sharifi A, Mohammadzadeh AM, Zahraei Salehi T, Mahmoodi P and Nourian AR. Cuminum cyminum L. essential oil: A promising antibacterial and antivirulence agent against multidrug-resistant Staphylococcus aureus. Front. Microbiol. 2021; 12: 667833. [DOI:10.3389/fmicb.2021.667833]
35. Farid Afshar F, Saffarian P, Mahmoodzadeh Hosseini H, Sattarian F, Amin M and Imani Fooladi AA. Antimicrobial effects of Ferula gummosa Boiss gum against extended-spectrum β-lactamase producing Acinetobacter clinical isolates. Iran. J. Microbiol. 2016; 8(4): 263-73.
36. Al Zuhairi JJMJ, Jookar Kashi F, Rahimi-Moghaddam A and Yazdani M. Antioxidant, cytotoxic and antibacterial activity of Rosmarinus officinalis L. essential oil against bacteria isolated from urinary tract infection. Eur. J. Integr. Med. 2020; 38. 101192. [DOI:10.1016/j.eujim.2020.101192]
37. Noorbakhsh F, Alikahi M and Ourtakand MM. Detection the effect of Thymus vulgaris essential oils and Zno nanoparticle on multi drug resistance Ainetobacter baumannii. Iran. J. Biol. Sci. 2019; 14(1): 55-63.
38. Mobaiyen H, Jafari Sales A and Sayyahi J. Evaluating antimicrobial effects of Centaurea plant's essential oil on pathogenic bacteria: Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli isolated from clinical specimens. J. Adv. Biomed. Sci. 2015; 5(4): 479-87.
39. Soleimani N and Ebraze N. Evaluate anti-bacterial effects of Cinnamomun verum and Ferula gummosa essential oil on some pathogen gram positive and negative bacteria. NCMBJ. 2016; 6(23): 87-94.
40. Elyasi Ghahfarrokhi A, Saeedi M, Khanavi M, Mojtabavi S, Kobarfard F and Faramarzi MA. Chemical composition and biological effects of Pistacia atlantica Desf. oleoresin essential oil. RJP. 2022; 9(3): 25-33.
41. Modareskia M, Fattahi M and Mirjalili MH. Thymol screening, phenolic contents, antioxidant and antibacterial activities of Iranian populations of Trachyspermum ammi (L.) Sprague (Apiaceae). Sci. Rep. 2022; 12(1): 15645. [DOI:10.1038/s41598-022-19594-7]
42. Ghavam M, Bacchetta G, Castangia I and Manca ML. Evaluation of the composition and antimicrobial activities of essential oils from four species of Lamiaceae martinov native to Iran. Sci. Rep. 2022; 12(1): 17044. [DOI:10.1038/s41598-022-21509-5]
43. Ramtin M, Sharifniya F, Larypoor M, Mirpour M and Zarrabi S. Evaluation of the active ingredient of Campsis radicans essential oils and its antimicrobial evaluation against pathogenic bacteria. Curr. Microbiol. 2022; 79(11): 338. [DOI:10.1007/s00284-022-03042-w]
44. Razavi N, Molavi Choobini Z, Salehian Dehkordi M, Saleh Riyahi S, Salehian Dehkordi M and Molavi Choobini S. Overview of the antibacterial properties of essential oils and extracts of medicinal plants in Iran. J. Shahrekord Univ. Med. Sci. 2016; 17(6): 41-52.
45. Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 2004; 94(3): 223-53. [DOI:10.1016/j.ijfoodmicro.2004.03.022]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb