year 21, Issue 81 (3-2022)                   J. Med. Plants 2022, 21(81): 22-32 | Back to browse issues page

Research code: 971304


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghafarzadegan R, Yaghoobi M, Momtaz S, Ashoory N, Ghiaci Yekta M, Hajiaghaee R. Process optimization for green synthesis of iron nanoparticles by extract of fenugreek (Trigonella foenum-graecum L.) seeds. J. Med. Plants 2022; 21 (81) :22-32
URL: http://jmp.ir/article-1-3200-en.html
1- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
2- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
3- Food and Drug Research Center, Food and Drug Organization, MOH & ME, Tehran, Iran
4- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran , hajiaghaee@imp.ac.ir
Abstract:   (2255 Views)
Background: The green synthesis of nanoparticles using plants presents important advantages over other biological systems. Natural compounds present in plant extracts can reduce metal ions to nanoparticles in a single-step green synthesis process. Seeds of fenugreek with various compounds and antioxidant activity are suitable for green synthesis. Objective: In this study, the performance of fenugreek seeds extract was evaluated for iron nanoparticles production. Methods: The fenugreek (Trigonella foenum-graecum L.) seeds were extracted with a distilled water solution at environmental temperature and this aqueous extract was used for the iron nanoparticles synthesis. Response surface methodology was applied to optimize nanoparticle production by considering three independent variables: the extract to metal ion ratio (1.5-6.5), incubation time (30-90 min), and temperature (35-65 °C). Results: Mixing the fenugreek seeds extract and iron salt solution with a volume ratio of 1.5 at 36.5 °C for 90 min led to the optimization of iron nanoparticle production with the narrowest size distribution. At the optimized condition, the nanoparticle size was in the range of 20-40 nm. Conclusion: Iron nanoparticles were successfully synthesized with fenugreek seed extract. Physical parameters such as time, temperature, and mixing volume ratio of the extract to metal ions can control the average size of the synthesized green iron nanoparticles.
Full-Text [PDF 868 kb]   (1054 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2021/09/28 | Accepted: 2022/01/1 | Published: 2022/03/1

References
1. VK S, RA Y and Y L. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009; 145(1-2): 83-96. [DOI:10.1016/j.cis.2008.09.002]
2. Jeong E, Jung G and Hong CA. research HL-A of pharmacal and 2014 undefined. Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Springer. 2013; 37(1): 53-59. [DOI:10.1007/s12272-013-0273-5]
3. Xiao Z, Yuan M, Yang B, Liu Z, Huang J and Sun D. Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules. Chemosphere. 2016; 150: 357-364. [DOI:10.1016/j.chemosphere.2016.02.056]
4. Dale LH and Huber D. Synthesis, properties, and applications of iron nanoparticles. Small. 2005; 1(5): 482-501. [DOI:10.1002/smll.200500006]
5. Roy K and Ghosh CK. Biological synthesis of metallic nanoparticles: A green alternative. In: Nanotechnology: Synthesis to Applications 2017. [DOI:10.1201/9781315116730-7]
6. Ganguly S, Mondal S, Das P, Bhawal P, Das T kanti, Bose M, Choudhary S, Gangopadhyay S, Das AK and Das NC. Natural saponin stabilized nano-catalyst as efficient dye-degradation catalyst. Nano-Structures and Nano-Objects 2018; 16: 86-95. [DOI:10.1016/j.nanoso.2018.05.002]
7. Rajeshkumar S, Kannan C and Annadurai G. Green synthesis of silver nanoparticles using marine brown Algae turbinaria conoides and its antibacterial activity. Int. J. Pharma. Bio. Sci. 2012; 3(4): 502-510. [DOI:10.1186/2193-8865-3-44]
8. Chetia L, Kalita D and Ahmed GA. Synthesis of Ag nanoparticles using diatom cells for ammonia sensing. Sens. Bio-Sensing Res. 2017; 16: 55-61. [DOI:10.1016/j.sbsr.2017.11.004]
9. Mukherjee S and Nethi SK. Biological synthesis of nanoparticles using bacteria. In: Nanotechnology for Agriculture: Advances for Sustainable Agriculture. 2019. [DOI:10.1007/978-981-32-9370-0_3]
10. Niknejad F, Nabili M, Daie Ghazvini R and Moazeni M. Green synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae. Curr. Med. Mycol. 2015; 1(3): 17-24. [DOI:10.18869/acadpub.cmm.1.3.17]
11. Sastry M, Ahmad A, Islam Khan M and Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 2003; 85(2): 162-170.
12. El-Said WA, Cho HY, Yea CH and Choi JW. Synthesis of metal nanoparticles inside living human cells based on the intracellular formation process. Adv. Mater. 2014; 26(6): 910-918. [DOI:10.1002/adma.201303699]
13. Akhbari M, Hajiaghaee R, Ghafarzadegan R, Hamedi S and Yaghoobi M. Process optimisation for green synthesis of zero-valent iron nanoparticles using Mentha piperita. IET Nanobiotechnol. 2019; 13(2): 160-169. [DOI:10.1049/iet-nbt.2018.5040]
14. Wei Y, Fang Z, Zheng L, Tan L and Tsang EP. Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts. Mater. Lett. 2016; 185: 384-386. [DOI:10.1016/j.matlet.2016.09.029]
15. Tavosi F, Ghafarzadegan R, Mirshokraei SA and Hajiaghaee R. Green synthesis of iron nano particles using Mentha longifolia L. extract. J. Med. Plants. 2018; 17(66): 135-144.
16. Wang Z, Fang C and Mallavarapu M. Characterization of iron-polyphenol complex nanoparticles synthesized by Sage (Salvia officinalis) leaves. Env. Tech. Inno. 2015; 4: 92-97. [DOI:10.1016/j.eti.2015.05.004]
17. Alarcon-Aguilara FJ, Roman-Ramos R, Perez-Gutierrez S, Aguilar-Contreras A, Contreras-Weber CC and Flores-Saenz JL. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J. Ethnopharmacol. 1998; 61(2): 101-110. [DOI:10.1016/S0378-8741(98)00020-8]
18. Ody P. The Herbs Society's Complete Medicinal Herbal. 1993.
19. Petit PR, Sauvaire YD, Hillaire-Buys DM, Leconte OM, Baissac YG, Ponsin GR and Ribes GR. Steroid saponins from fenugreek seeds: Extraction, purification, and pharmacological investigation on feeding behavior and plasma cholesterol. Steroids. 1995; 60(10): 674-680. [DOI:10.1016/0039-128X(95)00090-D]
20. Broca C, Gross R, Petit P, Sauvaire Y, Manteghetti M, Tournier M, Masiello P, Gomis R and Ribes G. 4-hydroxyisoleucine: Experimental evidence of its insulinotropic and antidiabetic properties. Am. J. Physiol-Endocrinol Metab. 1999; 277(4): E617-E623. [DOI:10.1152/ajpendo.1999.277.4.E617]
21. Obanda M, Owuor PO and Taylor SJ. Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 1997; 74(2): 209-215. https://doi.org/10.1002/(SICI)1097-0010(199706)74:2<209::AID-JSFA789>3.0.CO;2-4 [DOI:10.1002/(SICI)1097-0010(199706)74:23.0.CO;2-4]
22. Marinova D, Ribarova F and Atanassova M. total phenolics and total flavonoids in bulgarian fruits and vegetables. Academia. Edu. 2005; 40(3): 255-260.
23. Yuan YV, Bone DE and Carrington MF. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem. 2005; 91(3): 485-494. [DOI:10.1016/j.foodchem.2004.04.039]
24. Poguberović SS, Krčmar DM, Maletić SP, Kónya Z, Pilipović DDT, Kerkez D V and Rončević SD. Removal of As (III) and Cr (VI) from aqueous solutions using "green" zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol. Eng. 2016; 90: 42-49. [DOI:10.1016/j.ecoleng.2016.01.083]
25. Devatha CP, Thalla AK and Katte SY. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean Prod. 2016; 139: 1425-1435. [DOI:10.1016/j.jclepro.2016.09.019]
26. Katata-Seru L, Moremedi T, Aremu OS and Bahadur I. Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: removal of nitrate from water and antibacterial activity against Escherichia coli. J. Mol. Liq. 2018; 256: 296-304. [DOI:10.1016/j.molliq.2017.11.093]
27. Wang T, Lin J, Chen Z, Megharaj M and Naidu R. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean Prod. 2014; 83: 413-419. [DOI:10.1016/j.jclepro.2014.07.006]
28. Zhuang Z, Huang L, Wang F and Chen Z. Effects of cyclodextrin on the morphology and reactivity of iron-based nanoparticles using Eucalyptus leaf extract. Ind. Crops Prod. 2015; 69: 308-313. [DOI:10.1016/j.indcrop.2015.02.027]
29. Wang T, Jin X, Chen Z, Megharaj M and Naidu R. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ. 2014; 466: 210-213. [DOI:10.1016/j.scitotenv.2013.07.022]
30. Weng X, Jin X, Lin J, Naidu R and Chen Z. Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles. Ecol. Eng. 2016; 97: 32-39. [DOI:10.1016/j.ecoleng.2016.08.003]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb