year 20, Issue 78 (5-2021)                   J. Med. Plants 2021, 20(78): 78-89 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Qaderi A, Mehrafarin A, Rezazadeh S, Zarinpanjeh N. The efficient method for in vitro micropropagation of Ginkgo biloba L.. J. Med. Plants 2021; 20 (78) :78-89
URL: http://jmp.ir/article-1-3046-en.html
1- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
2- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran , zarinpanjeh@imp.ac.ir
Abstract:   (6687 Views)
Background: Ginkgo biloba L. leaf extract is used in medicine due to its therapeutic actions such as regulating cerebral blood flow, lowering oxidative stress, delaying the progress of dementia and diabetes. Objective: At the current study, the efficient micropropagation of G. biloba has been optimized by applying tissue culture method. Methods: Different explants (leaves, stems and lateral buds) were disinfected superficially and were cultured in WPM supplemented with various types and concentrations of plant growth regulators for shooting and subsequently for root induction. Results: The best treatment for shoot induction frequency (100 %), regenerated shoot length (2.47 cm) and number of regenerated leaves per explant (6.5) was achieved by culturing the lateral buds on WPM medium having Kin at 1 mg/L and IAA at 0.5 mg/L. The best root induction medium on the basis of root induction (100 %) and regenerated root lengths (8.5 cm) was WPM medium with IBA at 1 mg/L and AC at 2 g/L. After acclimatization, 60 % of regenerated platelets were survived. Finally, based on HPLC analysis, no significant difference was observed between the amount of quercetin in the leaves of propagated seedlings under in vitro conditions and their mother base. Conclusion: The optimized protocol proposed to be used as an efficient method for commercial micropropagation of ginkgo tree.
Full-Text [PDF 519 kb]   (1357 Downloads)    
Type of Study: Research | Subject: Biotechnology
Received: 2021/02/6 | Accepted: 2021/05/10 | Published: 2021/06/1

References
1. Jacobs BP and Browner WS. Ginkgo biloba: a living fossil. Am. J. Med. 2000; 108: 341-342. [DOI:10.1016/S0002-9343(00)00290-4]
2. Chan PC, Xia Q, and Fu PP. Ginkgo Biloba Leave Extract: Biological, Medicinal, and Toxicological Effects. J. Environ. Sci. Heal. C 2007; 25: 211-244. [DOI:10.1080/10590500701569414]
3. Sabater-Jara AB, Souliman-Youssef S, Novo-Uzal E, Almagro L, Belchı'-Navarro S and Pedren˜o MA. Biotechnological approaches to enhance the biosynthesis of ginkgolides and bilobalide in Ginkgo biloba. Phytochem. Rev. 2013; 12:191-205. [DOI:10.1007/s11101-013-9275-7]
4. Cheng SY, Xu F and Wang Y. Advances in the study of flavonoids in Ginkgo biloba leaves. J. Med. Plants Res. 2009; 3: 1248-1252.
5. Weimann S, Roll S, Schwarzbach C, Vauth C and Willich SN. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr. 2010; 10: 1-14. [DOI:10.1186/1471-2318-10-14]
6. Kumar Mohanta T, Tamboli Y and Zubaidha PK. Phytochemical and medicinal importance of Ginkgo biloba L. Nat. Prod. Res. 2014; 28: 746-752. [DOI:10.1080/14786419.2013.879303]
7. Zhou L, Meng Q, Quian T and Yang Z. Ginkgo biloba extract enhances glucose tolerance in hyperinsulinism-induced hepatic cells. J. Nat. Med. 2011; 65: 50-56. [DOI:10.1007/s11418-010-0456-z]
8. Van Beek TA. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. 2002; 937: 21-55. [DOI:10.1016/S0021-9673(02)00172-3]
9. Isah T. Nodal segment explant type and preconditioning influence in vitro shoot morphogenesis in Ginkgo biloba L. Plant Physiol. Rep. 2019; 25:74-86. [DOI:10.1007/s40502-019-00475-7]
10. Yuan Z, Tian Y, He F and Zhou H. Endophytes from Ginkgo biloba and their secondary metabolites. Chin. Med. 2019; 14: 51. [DOI:10.1186/s13020-019-0271-8]
11. Tommasi F, Scaramuzzi F. In vitro propagation of Ginkgo biloba by using various bud cultures. Biol. Plantarum 2004; 48: 297-300. [DOI:10.1023/B:BIOP.0000033460.75432.d1]
12. Mantovani NC, Grando MF, Xavier A and Otoni WC. In vitro shoot induction and multiplication from nodal segments of adult Ginkgo biloba plants. Hortic. Bras. 2013; 31; 184-189. [DOI:10.1590/S0102-05362013000200003]
13. Chaudhury A, Power JB, Davey MR. High frequency direct plant regeneration from leaf and petals of Cape Primose (Streptocarpus). JCSB 2010; 13: 107-112. [DOI:10.1007/s12892-010-0006-y]
14. Toliat M, Abdoli M, Ghorbani-Meshgin M, Khalighi-Sigaroodi F and Omidi, M. Investigation of in vitro culture of Ginkgo biloba through tissue culture of different explants. J. Med. Plants 2009; 8: 156-163. [In Persian].
15. Choi PS, Cho DH and Soh WY. Shoot organogenesis from immature zygotic embryo cultures of Ginkgo biloba. Biol. plantarum 2003; 47: 309-312. [DOI:10.1023/B:BIOP.0000022273.55284.d6]
16. Mccown BH and Sellmer JC. General Media and Vessels Suitable for Woody Plant Culture. Cell and Tissue Culture in Forestry, Springer, Dordrecht, 1987, pp: 4-16. [DOI:10.1007/978-94-017-0994-1_2]
17. Chandana BC, Kumari Nagaveni HC, Lakshmana D, Shashikala SK and Heena MS. Role of plant tissue culture in micropropagation, secondary metabolites production and conservation of some endangered medicinal crops. J. Pharmacogn. Phytochem. 2018; 3: 246-251.
18. Camper ND, Coker PS, Wedge DE and Keese RJ. In vitro culture of Ginkgo. In Vitro Cell. Dev. Biol. Plant 1997; 33: 125-127. [DOI:10.1007/s11627-997-0009-7]
19. Choi PS, Cho D and Soh WY. Shoot organogenesis from immature zygotic embryo cultures of Ginkgo biloba. Biol. Plantarum 2003; 47: 309-312. [DOI:10.1023/B:BIOP.0000022273.55284.d6]
20. Friedman WE. Morphogenesis and experimental aspects of growth and development of the male gametophyte of Ginkgo biloba in Vitro. Am. J. Bot. 1987; 74: 1816-1830. [DOI:10.1002/j.1537-2197.1987.tb08784.x]
21. Mukhambetzhanov SK. Culture of nonfertilized female gametophytes in vitro. Plant Cell Tiss. Org. 1997; 48: 111-119. [DOI:10.1023/A:1005838113788]
22. Hassan SAM and Zayed NS. Factor controlling micropropagation of fruit trees: a review. Science International 2018; 6: 1-10. [DOI:10.17311/sciintl.2018.1.10]
23. Xiong H, Sun H, Zou F and Fan X. Micropropagation of Chinquapin (Castanea henryi) using axillary shoots and cotyledonary nodes. Hortic. Sci. 2018; 53: 1482-1486. [DOI:10.21273/HORTSCI13292-18]
24. Ridzuan NI, Abdullah N, Vun YL and Supramaniam CV. Micropropagation and defence enzymes assessment of Moringa oleifera L. plantlets using nodal segments as explants. S. Afr. J. Bot. 2019; 129: 56-61. [DOI:10.1016/j.sajb.2018.12.010]
25. Amiri S, Panahi B, Mohammadi R and Fattahi F. Effect of plant growth regulator combination on direct in vitro regeneration of Persian Lilac (Melia azedarach L.). Proc. Natl. Acad. Sci. B: Biol. Sci. 2020; 90: 261- 265. [DOI:10.1007/s40011-019-01099-5]
26. Erland LAE, Shukla MR, Glover WB and Saxena PK. A Simple and efficient method for analysis of plant growth regulators: a new tool in the chest to combat recalcitrance in plant tissue culture. Plant Cell Tiss. Org. 2017; 131: 459-470. [DOI:10.1007/s11240-017-1297-1]
27. Shirin F and Rana PK. In vitro plantlet regeneration from nodal explants of field-grown culms in Bambusa glaucescens willd. Plant Biotechnol Rep. 2007; 1:141-147. [DOI:10.1007/s11816-007-0020-9]
28. Saha S, Mori H and Hattori K. Synergistic effect of kinenin and benzyl adenine plays a vital role in high frequency regeneration from cotyledon explants of bottle gourd (Lagenaria siceraria) in relation to ethylene production. Breed Sci. 2007; 57: 197-202. [DOI:10.1270/jsbbs.57.197]
29. Rathore JS, Phulwaria M, Rai MK, Shekhawat S and Shekhawat NS. Use of liquid culture medium and ex vitro rooting for micropropagation of Acacia nilotica (L.) Del. ssp. cupressiformis. Indian J. Plant Physi. 2015; 20: 172-176. [DOI:10.1007/s40502-015-0149-4]
30. Shekhawat MS, Manokari M and Revathi J. (2017). In vitro propagation and ex vitro rooting of Aerva lanata (L.) Juss. Ex Schult. A rare medicinal plant. Indian J. Plant Physi. 2017; 22: 40- 47. [DOI:10.1007/s40502-016-0248-x]
31. Máximo WPF, Santos BR, Martins JPR, Beijo LA and Barbosa S. Multiplication and in vitro rooting of Handroanthus impetiginosus (Mart. Ex DC.) Mattos. Ci. Fl., Santa Maria, 2020; 30: 658-668. [DOI:10.5902/1980509827012]
32. Szyp-Borowska I, Ukalska J, Wojda T, Sulkowska M and Klisz M. Mocropropagation and in vitro rooting of Robinia pseudoacacia L. recalcitrant genotypes. Folia For. Pol. 2020; 62:13-21. [DOI:10.2478/ffp-2020-0002]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb