year 19, Issue 73 (3-2020)                   J. Med. Plants 2020, 19(73): 37-62 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadian-Attari M M, Eslami S, Dargahi L, Noorbala A A. Common herbal treatments for senile dementia in ancient civilizations: Greco-Roman, Chinese, Indian, and Iranian. J. Med. Plants 2020; 19 (73) :37-62
1- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
2- Dietary Supplements & Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
3- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4- Psychosomatic Medicine Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran ,
Abstract:   (4631 Views)
Background: Senile dementia is the most common kind of dementia with considerable social and economic costs. Since the nature of disease is multi-pathological, current treatments cannot cover all aspects of the disease. Recently, scientific considerations have focused on the role of natural products, especially those with traditional backgrounds. Objective: to review natural treatments of dementia in ancient Greek, traditional Chinese, Ayurveda, and Iranian traditional medicines with concentration on common herbs concurrently mentioned in two or more than two of them. Methods: Scopus database and primary sources were thoroughly searched for selective keywords. The common herbs concurrently mentioned in two or more than two of the aforementioned traditional medicines were selected to deeply investigate for their active ingredients as well as their mechanisms of actions. Results: The results showed that Acorus calamus, Nardostachys jatamansi, Glycyrrhiza glabra, Phyllanthus emblica, Semencarpus anacardium, Terminalia chebula, and Zingiber officinale had been commonly prescribed for dementia in mentioned traditional systems. According to pharmacological studies, these herbs act their anti-dementia effects via cholinergic, anti-NMDA, antioxidant, anti-inflammatory, anti-apoptotic, and anti-β amyloid activities. Furthermore, 16 active principles of these herbs were identified, including α- and β-asarone, desoxo-narchinol A, narchinol B, glabridin, liquiritigenin, emblicanins A and B, 3, 5, 6, 3', 5', 6'-hexahydroxybiphenyl-2, 2'-dicarboxylic acid, 1',2'-dihydroxy-3'-pentadec-8-enylbenzene, 1',2'-dihydroxy-3'-pentadeca-8,11-dienylbenzene, chebulagic acid, and 1,2,3,4,6-penta-O-galloyl-β-d-glucose, Zingipain, 6-gingerol, and 6-shogaol. Conclusion: Chinese, Indian, and Iranian traditional medicine can play a complementary and alternative role in preventing and treating senile dementia. The scientific evidence supports their traditional anti-dementia claims.
Full-Text [PDF 649 kb]   (1256 Downloads)    
Type of Study: Review | Subject: Traditional Pharmacy & Traditional Medicine
Received: 2018/10/26 | Accepted: 2019/02/26 | Published: 2020/06/6

1. Alzheimer's Association. 2012 Alzheimer's disease facts and figures. pp. 5 and 10. Available at: facts_figures_2012.pdf, accessed at April 8, 2013.
2. Hebert LE, Weuve J, Scherr PA and Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurol. 2013; 80 (19): 1778-83. [DOI:10.1212/WNL.0b013e31828726f5]
3. Karran E, Mercken M and De Strooper B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug. Discov. 2011; 10 (9): 698-712. [DOI:10.1038/nrd3505]
4. Contestabile A. The history of the cholinergic hypothesis. Behav. Brain. Res. 2011; 221 (2): 334-40. [DOI:10.1016/j.bbr.2009.12.044]
5. U.S. Food and Drug Administration (FDA). Drug approval package. Available at: accessed at September 23, 2013.
6. Tayeb HO, Yang HD, Price BH, Tarazi FI. Pharmacotherapies for Alzheimer's disease: beyond cholinesterase inhibitors. Pharmacol. Ther. 2012; 134 (1): 8-25. [DOI:10.1016/j.pharmthera.2011.12.002]
7. Hardy J. A. and Higgins G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992; 256: 184-185. [DOI:10.1126/science.1566067]
8. Hardy J and Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. Sci. 1991; 12: 383-388. [DOI:10.1016/0165-6147(91)90609-V]
9. Reitz C. Alzheimer's disease and the amyloid cascade hypothesis: a critical review. Int. J. Alzheimers Dis. 2012; 2012: 369808. [DOI:10.1155/2012/369808]
10. Lee HG, Zhu X, Castellani RJ, Nunomura A, Perry G and Smith MA. Amyloid-beta in Alzheimer disease: the null versus the alternate hypotheses. J. Pharmacol. Exp. Ther. 2007; 321 (3): 823-9. [DOI:10.1124/jpet.106.114009]
11. Mondragón-Rodríguez S, Perry G, Zhu X and Boehm J. Amyloid Beta and tau proteins as therapeutic targets for Alzheimer's disease treatment: rethinking the current strategy. Int. J. Alzheimers Dis. 2012; 2012: 630182. [DOI:10.1155/2012/630182]
12. Zilka N and Novak M. The tangled story of Alois Alzheimer. Bratisl Lek Listy. 2006; 107 (9-10): 343-5.
13. Berchtold NC and Cotman CW. Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960s. Neurobiol. Aging. 1998; 19 (3): 173-89. [DOI:10.1016/S0197-4580(98)00052-9]
14. Karenberg A, Förstl H. Dementia in the Greco-Roman world. J. Neurol. Sci. 2006; 244 (1-2): 5-9. [DOI:10.1016/j.jns.2005.12.004]
15. Liu J, Wang LN and Tian JZ. Recognition of dementia in ancient China. Neurobiol. Aging. 2012; 33 (12): 2948.e11-3. [DOI:10.1016/j.neurobiolaging.2012.06.019]
16. Adams M, Gmünder F and Hamburger M. Plants traditionally used in age related brain disorders--a survey of ethnobotanical literature. J. Ethnopharmacol. 2007; 113 (3): 363-81. [DOI:10.1016/j.jep.2007.07.016]
17. Manyam BV. Dementia in Ayurveda. J. Altern. Complement. Med. 1999; 5 (1): 81-88. [DOI:10.1089/acm.1999.5.81]
18. Mishra RN. Rasayan - The ayurvedic perspective. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2011; 2 (4): 269-282.
19. History of Islam. Wikipedia, the free encyclopedia. available at: accessed October 1, 2013.
20. Israili AH. Humoral theory of Unani Tibb. Indian J. History of Science 1981; 16 (1): 95-99.
21. Browne E. Arabian Medicine. Cambridge University Press, 1921.
22. Tabari A. Ferdows ul-Kehma (Paradise of Wisdom). Traditional Medicine and Materia Medica Research Center, Iran, 2012, pp: 155-156 (Persian).
23. Rhazes (10th century). Al-Hawi.vol. 1, Alhavi Pharmaceutical Company, Iran, 1990, pp: 101-109 (Persian).
24. Avicenna (11th century). The Canon of Medicine.vol.3, ed. seven, Soroush Press, Iran, 2008, pp: 118-120 (Persian).
25. Aghili Khorasani (18th century). Moalejat (The Book of Therapeutics).Research Institute for Islamic and Complementary Medicine. Iran, 2008, pp: 5 (Persian).
26. Chishti A (19th century). Exir-e Azam (Great Elixir).Research Institute for Islamic and Complementary Medicine. Iran, 2004 (Persian).
27. Pedanius Dioscorides, Tess Anne Osbaldeston, Rob Wood. Dioscorides: De Materia Medica. Johannesburg: IBIDIS PRESS, 2000, p: 24.
28. Balakumbahan R, Rajamani K, Kumanan K. Acorus calamus: an overview. J. Medicinal Plants Research 2010; 4 (25): 2740-2745.
29. May BH, Lu C, Lu Y, Zhang AL and Xue CC. Chinese herbs for memory disorders: a review and systematic analysis of classical herbal literature. J. Acupunct. Meridian Stud. 2013; 6 (1): 2-11. [DOI:10.1016/j.jams.2012.11.009]
30. May BH, Lu C, Bennett L, Hügel HM and Xue CC. Evaluating the traditional Chinese literature for herbal formulae and individual herbs used for age-related dementia and memory impairment. Biogerontol. 2012; 13 (3): 299-312. [DOI:10.1007/s10522-012-9375-6]
31. Momen Tonekaboni M (17th century). Tohfat ul-Momenin.Traditional medicine and Materia Medica Research Center, 2007, (Persian).
32. Aghili Khorasani (18th century), Makhzan ul-Advia. India, 1844.
33. Sundaramahalingam M., Ramasundaram S., Rathinasamy S.D., Natarajan R.P. and Somasundaram T. Role of Acorus calamus and α-asarone on hippocampal dependent memory in noise stress exposed rats. Pakistan J. Biological Sciences 2013; 16 (16): 770-778. [DOI:10.3923/pjbs.2013.770.778]
34. Oh MH, Houghton PJ, Whang WK and Cho JH. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine 2004; 11 (6): 544-8. [DOI:10.1016/j.phymed.2004.03.001]
35. Manikandan S, Srikumar R, Jeya Parthasarathy N and Sheela Devi R. Protective effect of Acorus calamus LINN on free radical scavengers and lipid peroxidation in discrete regions of brain against noise stress exposed rat. Biol. Pharm. Bull. 2005; 28 (12): 2327-30. [DOI:10.1248/bpb.28.2327]
36. Manikandan S and Devi RS. Antioxidant property of alpha-asarone against noise-stress-induced changes in different regions of rat brain. Pharmacol. Res. 2005; 52 (6): 467-74. [DOI:10.1016/j.phrs.2005.07.007]
37. Cho J, Kim YH, Kong JY, Yang CH and Park CG. Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sci. 2002; 71 (5): 591-9. [DOI:10.1016/S0024-3205(02)01729-0]
38. Lee HJ and Choi BT. Effects of α-asarone on proliferation and differentiation of neural progenitor cells. Korean J. Phys. Anthropol. 2018; 31 (2): 41-49. [DOI:10.11637/kjpa.2018.31.2.41]
39. Liu J, Li C, Xing G, Zhou L, Dong M, Geng Y, Li X, Li J, Wang G, Zou D and Niu Y. Beta-asarone attenuates neuronal apoptosis induced by Beta amyloid in rat hippocampus. Yakugaku Zasshi. 2010; 130 (5): 737-46. [DOI:10.1248/yakushi.130.737]
40. Deng M, Huang L, Ning B, Wang N, Zhang Q, Zhu C and Fang Y. β-asarone improves learning and memory and reduces Acetyl Cholinesterase and Beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy. Brain. Res. 2016; 1652: 188-194. [DOI:10.1016/j.brainres.2016.10.008]
41. Li C, Xing G, Dong M, Zhou L, Li J, Wang G, Zou D, Wang R, Liu J and Niu Y. Beta-asarone protection against beta-amyloid-induced neurotoxicity in PC12 cells via JNK signaling and modulation of Bcl-2 family proteins. Eur. J. Pharmacol. 2010; 635 (1-3): 96-102. [DOI:10.1016/j.ejphar.2010.03.013]
42. Liu SJ, Yang C, Zhang Y, Su RY, Chen JL, Jiao MM, Chen HF, Zheng N, Luo S, Chen YB, Quan SJ and Wang Q. Neuroprotective effect of β-asarone against Alzheimer's disease: regulation of synaptic plasticity by increased expression of SYP and GluR1. Drug Des. Devel. Ther. 2016; 10: 1461-9. [DOI:10.2147/DDDT.S93559]
43. Mukherjee PK, Kumar V, Mal M and Houghton PJ. In vitro acetylcholinesterase inhibitory activity of the essential oil from Acorus calamus and its main constituents. Planta Med. 2007; 73 (3): 283-5. [DOI:10.1055/s-2007-967114]
44. Yang C, Li X, Mo Y, Liu S, Zhao L, Ma X, Fang Z, Chen J, Chen Y, Yu X, Fang S, Zhang Y, Xian S and Wang Q. β-Asarone Mitigates Amyloidosis and Downregulates RAGE in a Transgenic Mouse Model of Alzheimer's Disease. Cell Mol. Neurobiol. 2016; 36 (1): 121-30. [DOI:10.1007/s10571-015-0226-2]
45. Chang W, Teng J. Combined application of tenuigenin and β-asarone improved the efficacy of memantine in treating moderate-to-severe Alzheimer's disease. Drug. Des. Devel. Ther. 2018; 12: 455-462. [DOI:10.2147/DDDT.S155567]
46. Muthuraman A and Singh N. Acute and sub-acute oral toxicity profile of Acorus calamus (Sweet flag) in rodents. Asian Pacific J. Tropical. Biomedicine 2012; S1017-S1023. [DOI:10.1016/S2221-1691(12)60354-2]
47. Mythili Avadhani MN, Immanuel Selvaraj C, Rajasekharan PE and Tharachand C. The Sweetness and Bitterness of Sweet Flag (Acorus calamus L.) - A Review. Research J. Pharmaceutical, Biological and Chemical Sciences. 2013; 4 (2): 598-610.
48. Singh UM, Gupta V, Rao VP, Sengar RS and Yadav MK. A review on biological activities and conservation of endangered medicinal herb Nardostachys jatamansi. Int. J. Med. Arom. Plants 2013; 3 (1): 113-124.
49. Avicenna (11th century). The Canon of Medicine.vol.2, ed. eight, Soroush Press, Iran, 2008.
50. Karkada G, Shenoy KB, Halahalli H and Karanth KS. Nardostachys jatamansi extract prevents chronic restraint stress-induced learning and memory deficits in a radial arm maze task. J. Nat. Sci. Biol. Med. 2012; 3 (2): 125-132. [DOI:10.4103/0976-9668.101879]
51. Rahman H and Muralidharan P. Nardostachys jatamansi DC protects from the loss of memory and cognition deficits in sleep deprived Alzheimer's disease (AD) mice model. Int. J. Pharm. Sci. Rev. Res. 2010; 5 (3): 160-167.
52. Joshi H and Parle M. Nardostachys jatamansi improves learning and memory in mice. J. Med. Food 2006; 9 (1): 113-8. [DOI:10.1089/jmf.2006.9.113]
53. Mukherjee PK, Kumar V and Houghton PJ. Screening of Indian Medicinal Plants for Acetylcholinesterase Inhibitory Activity. Phytother. Res. 2007; 21: 1142-1145. [DOI:10.1002/ptr.2224]
54. Vinutha B, Prashanth D, Salma K, Sreeja SL, Pratiti D, Padmaja R, Radhika S, Amit A, Venkateshwarlu K and Deepak M. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 2007; 109 (2): 359-63. [DOI:10.1016/j.jep.2006.06.014]
55. Sharma SK and Singh AP. In Vitro Antioxidant and Free Radical Scavenging Activity of Nardostachys jatamansi DC. J. Acupunct Meridian Stud. 2012; 5 (3): 112-8. [DOI:10.1016/j.jams.2012.03.002]
56. Dhuna K, Dhuna V, Bhatia G, Singh J and Kamboj SS. Cytoprotective effect of methanolic extract of Nardostachys jatamansi against hydrogen peroxide induced oxidative damage in C6 glioma cells. Acta Biochim. Pol. 2013; 60 (1): 21-31. [DOI:10.18388/abp.2013_1946]
57. Liu QF, Jeon Y, Sung YW, Lee JH, Jeong H, Kim YM, Yun HS, Chin YW, Jeon S, Cho KS and Koo BS. Nardostachys jatamansi Ethanol Extract Ameliorates Aβ42 Cytotoxicity. Biol. Pharm. Bull. 2018; 41 (4): 470-477. [DOI:10.1248/bpb.b17-00750]
58. Yoon CS, Kim KW, Lee SC, Kim YC and Oh H. Anti-neuroinflammatory effects of sesquiterpenoids isolated from Nardostachys jatamansi. Bioorg Med. Chem. Lett. 2018; 28 (2): 140-144. [DOI:10.1016/j.bmcl.2017.11.041]
59. Kim KW, Yoon CS, Kim YC and Oh H. Desoxo-narchinol A and Narchinol B Isolated from Nardostachys jatamansi Exert Anti-neuroinflammatory Effects by Up-regulating of Nuclear Transcription Factor Erythroid-2-Related Factor 2/Heme Oxygenase-1 Signaling. Neurotox. Res. 2018: Inpress. DOI: 10.1007/s12640-018-9951-x. [DOI:10.1007/s12640-018-9951-x]
60. Glycyrrhiza glabra (liquorice). Kew Royal Botanical Garden. available at: Accessed October 1, 2013.
61. Asl MN and Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res. 2008; 22 (6): 709-24. [DOI:10.1002/ptr.2362]
62. Lin Z, Gu J, Xiu J, Mi T, Dong J and Tiwari JK. Traditional chinese medicine for senile dementia. Evid. Based Complement. Alternat. Med. 2012; 2012: 692621. [DOI:10.1155/2012/692621]
63. Parle M, Dhingra D and Kulkarni SK. Memory-strengthening activity of Glycyrrhiza glabra in exteroceptive and interoceptive behavioral models. J. Med. Food 2004; 7 (4): 462-6. [DOI:10.1089/jmf.2004.7.462]
64. Cui YM, Ao MZ, Li W and Yu LJ. Effect of glabridin from Glycyrrhiza glabra on learning and memory in mice. Planta Med. 2008; 74 (4): 377-80. [DOI:10.1055/s-2008-1034319]
65. Sharifzadeh M, Shamsa F, Shiran S, Karimfar MH, Miri AH, Jalalizadeh H, Gholizadeh S, Salar F and Tabrizian K. A time courseanalysis of systemicadministration of aqueouslicorice extract on spatial memoryretention in rats. Planta Med. 2008; 74 (5): 485-90. [DOI:10.1055/s-2008-1074494]
66. Hasanein P. Glabridin as a major active isoflavan from Glycyrrhiza glabra (licorice) reverses learning and memory deficits in diabetic rats. Acta Physiol. Hung. 2011; 98 (2): 221-30. [DOI:10.1556/APhysiol.98.2011.2.14]
67. Dhingra D, Parle M and Kulkarni SK. Comparative brain cholinesterase-inhibiting activity of Glycyrrhiza glabra, Myristica fragrans, ascorbic acid, and metrifonate in mice. J Med Food. 2006 Summer; 9 (2): 281-3. [DOI:10.1089/jmf.2006.9.281]
68. Yu XQ, Xue CC, Zhou ZW, Li CG, Du YM, Liang J and Zhou SF. In vitro and in vivo neuroprotective effect and mechanisms of glabridin, a major active isoflavan from Glycyrrhiza glabra (licorice). Life Sci. 2008; 82 (1-2): 68-78. [DOI:10.1016/j.lfs.2007.10.019]
69. Liu RT, Zou LB, Fu JY and Lu QJ. Effects of liquiritigenin treatment on the learning and memory deficits induced by amyloid beta-peptide (25-35) in rats. Behav. Brain. Res. 2010; 210 (1): 24-31. [DOI:10.1016/j.bbr.2010.01.041]
70. Liu RT, Tang JT, Zou LB, Fu JY and Lu QJ. Liquiritigenin attenuates the learning and memory deficits in an amyloid protein precursor transgenic mouse model and the underlying mechanisms. Eur. J. Pharmacol. 2011; 669 (1-3): 76-83. [DOI:10.1016/j.ejphar.2011.07.051]
71. Liu RT, Zou LB and Lü QJ. Liquiritigenin inhibits Abeta (25-35)-induced neurotoxicity and secretion of Abeta (1-40) in rat hippocampal neurons. Acta Pharmacol. Sin. 2009; 30 (7): 899-906. [DOI:10.1038/aps.2009.74]
72. Hosseinzadeh H, Nassiri Asl M, Parvardeh S and Mansouri SMT. The effects of carbenoxolone on spatial learning in the Morris water maze task in rats. Med. Sci. Mon. 2005; 11: 88-94.
73. Scartezzini P and Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J. Ethnopharmacol. 2000; 71 (1-2): 23-43. [DOI:10.1016/S0378-8741(00)00213-0]
74. Bhattacharya A, Chatterjee A, Ghosal S and Bhattacharya SK. Antioxidant activity of active tannoid principles of Emblica officinalis (amla). Indian J. Exp. Biol. 1999; 37 (7): 676-80.
75. Pozharitskaya ON, Ivanova SA, Shikov AN and Makarov VG. Separation and evaluation of free radical-scavenging activity of phenol components of Emblica officinalis extract by using an HPTLC-DPPH* method. J. Sep. Sci. 2007; 30 (9): 1250-4. [DOI:10.1002/jssc.200600532]
76. Bhattacharya A, Ghosal S and Bhattacharya SK. Antioxidant activity of tannoid principles of Emblica officinalis (amla) in chronic stress induced changes in rat brain. Indian J. Exp. Biol. 2000; 38 (9): 877-80.
77. Keo S, Lee DS, Li B, Choi HG, Kim KS, Ko WM, Oh HC and Kim YC. Neuroprotective effects of Cambodian plant extracts on glutamate-induced cytotoxicity in HT22 cells. Natural Product Sciences 2012; 18 (3): 177-182.
78. Vasudevan M and Parle M. Memory enhancing activity of Anwala churna (Emblica officinalis Gaertn.): an Ayurvedic preparation. Physiol. Behav. 2007; 91 (1): 46-54. [DOI:10.1016/j.physbeh.2007.01.016]
79. Ashwlayan VD and Singh S. Reversal effect of Phyllanthus emblica (Euphorbiaceae) Rasayana on memory. Int. J. Appl. Pharm. 2011; 3 (2): 10-15.
80. Golechha M, Bhatia J and Arya DS. Studies on effects of Emblica officinalis (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice. J. Environ. Biol. 2012; 33 (1): 95-100.
81. Shahab Uddin M, Mamun AA, Hossain MS, Akter F, Iqbal MA and Asaduzzaman M. Exploring the Effect of Phyllanthus emblica L. on Cognitive Performance, Brain Antioxidant Markers and Acetylcholinesterase Activity in Rats: Promising Natural Gift for the Mitigation of Alzheimer's Disease. Ann. Neurosci. 2016; 23 (4): 218-229. [DOI:10.1159/000449482]
82. Justin Thenmozhi A, Dhivyabharathi M, William Raja TR, Manivasagam T and Essa MM. Tannoid principles of Emblica officinalis renovate cognitive deficits and attenuate amyloid pathologies against aluminum chloride induced rat model of Alzheimer's disease. Nutr. Neurosci. 2016; 19 (6): 269-78. [DOI:10.1179/1476830515Y.0000000016]
83. Husain I, Akhtar M, Madaan T, Vohora D, Abdin MZ, Islamuddin M and Najmi AK. Tannins enriched fraction of Emblica officinalis fruits alleviates high-salt and cholesterol diet-induced cognitive impairment in rats via Nrf2-ARE Pathway. Front. Pharmacol. 2018; 9: 23. DOI: 10.3389/fphar.2018.00023 [DOI:10.3389/fphar.2018.00023]
84. Ashwlayan VD and Singh R. Evaluation of memory enhancing effect of a compound isolated from Emblica officinalis fruit. Biomedicine 2017; 37 (1): 58-68.
85. Majumdar SH, Chakraborthy GS and Kulkarni KS. Medicinal potentials of Semecarpus anacardium nut- a review. J. Herbal Medicine and Toxicol. 2008; 2 (2): 9-13.
86. Heravi, Al-Abniya an Haqaiq al-Advia. Tehran: University of Tehran Press, 1992.
87. Farooq SM, Alla TR, Rao NV, Prasad K, Shalam K and Satyanarayana S. A study on CNS effect of nut milk extract of Semicarpus anacardium. Pharmacologyonline 2007; 1: 49-63.
88. Adhami HR, Farsam H and Krenn L. Screening of medicinal plants from Iranian Traditional Medicine for acetylcholinesterase inhibition. Phytother. Res. 2011; 25 (8): 1148-52. [DOI:10.1002/ptr.3409]
89. Adhami HR, Linder T, Kaehlig H, Schuster D, Zehl M and Krenn L. Catechol alkenyls from Semecarpus anacardium: acetylcholinesterase inhibition and binding mode predictions. J. Ethnopharmacol. 2012; 139 (1): 142-8. [DOI:10.1016/j.jep.2011.10.032]
90. Bhatnagar M, Shukla SD and Bhatnagar R. Experimental neurodegeneration in hippocampus and its phytoremidation. J. Herb. Pharmacother. 2005; 5 (2): 21-30. [DOI:10.1080/J157v05n02_03]
91. Prakash S, Satya S, Avanigadda S and Vangalapati M. Pharmacological Review on Terminalia chebula. International J. Research in Pharmaceutical and Biomedical Sciences 2012; 3 (2): 679-683.
92. Bag A, Bhattacharyya SK, Chattopadhyay RR and Rashid RA. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac. J. Trop. Biomed. 2013; 3 (3): 244-52. [DOI:10.1016/S2221-1691(13)60059-3]
93. Cheng HY, Lin TC, Yu KH, Yang CM and Lin CC. Antioxidant and Free Radical Scavenging Activities of Terminalia chebula. Biol. Pharm. Bull. 2003; 26 (9): 1331-5. [DOI:10.1248/bpb.26.1331]
94. Ali SK, Hamed AR, Soltan MM, Hegazy UM, Elgorashi EE, El-Garf IA and Hussein AA. In-vitro evaluation of selected Egyptian traditional herbal medicines for treatment of Alzheimer disease. BMC Complement. Altern. Med. 2013; 13 (1): 121. [DOI:10.1186/1472-6882-13-121]
95. Chang CL and Lin CS. Phytochemical Composition, Antioxidant Activity, and Neuroprotective Effect of Terminalia chebula Retzius Extracts. Evid. Based Complement. Alternat. Med. 2012; 2012: 125247. [DOI:10.1155/2012/125247]
96. Na M, Bae K, Kang SS, Min BS, Yoo JK, Kamiryo Y, Senoo Y, Yokoo S and Miwa N. Cytoprotective effect on oxidative stress and inhibitory effect on cellular aging of Terminalia chebula fruit. Phytother. Res. 2004; 18 (9): 737-41. [DOI:10.1002/ptr.1529]
97. Reddy DB, Reddy TC, Jyotsna G, Sharan S, Priya N, Lakshmipathi V and Reddanna P. Chebulagic acid, a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz., induces apoptosis in COLO-205 cell line. J. Ethnopharmacol. 2009; 124 (3): 506-12. [DOI:10.1016/j.jep.2009.05.022]
98. Sugaya K, Uz T, Kumar V and Manev H. New anti-inflammatory treatment strategy in Alzheimer's disease. Jpn. J. Pharmacol. 2000; 82 (2): 85-94. [DOI:10.1254/jjp.82.85]
99. Bishnoi M, Patil CS, Kumar A and Kulkarni SK. Protective effects of nimesulide (COX Inhibitor), AKBA (5-LOX Inhibitor), and their combination in aging-associated abnormalities in mice. Methods Find. Exp. Clin. Pharmacol. 2005; 27 (7): 465-70. [DOI:10.1358/mf.2005.27.7.920929]
100. Bishnoi M, Patil CS, Kumar A and Kulkarni SK. Co-administration of acetyl-11-keto-beta-boswellic acid, a specific 5-lipoxygenase inhibitor, potentiates the protective effect of COX-2 inhibitors in kainic acid-induced neurotoxicity in mice. Pharmacol. 2007; 79 (1): 34-41. [DOI:10.1159/000097627]
101. Sanchetia S, Sanchetia S, Umb BH and Seoa SY. 1,2,3,4,6-penta-O-galloyl-β-d-glucose: A cholinesterase inhibitor from Terminalia chebula. South African Journal of Botany 2010; 76 (2): 285-288. [DOI:10.1016/j.sajb.2009.11.006]
102. Phachonpai W, Wattanathorn J, Tong-un T, Thipkaew C, Uabundit N, Thukhammee W and Muchimapura S. Assessment of Neuropharmacological Activities of Terminalia chebula in Rats. American Journal of Pharmacology and Toxicol. 2012; 7 (2): 41-48. [DOI:10.3844/ajptsp.2012.41.48]
103. Grzanna R, Lindmark L and Frondoza CG. Ginger--an herbal medicinal product with broad anti-inflammatory actions. J. Med. Food 2005; 8 (2): 125-32. [DOI:10.1089/jmf.2005.8.125]
104. Ghayur MN, Gilani AH, Ahmed T, Khalid A, Nawaz SA, Agbedahunsi JM, Choudhary MI and Houghton PJ. Muscarinic, Ca (++) antagonist and specific butyrylcholinesterase inhibitory activity of dried ginger extract might explain its use in dementia. J. Pharm. Pharmacol. 2008; 60 (10): 1375-83. [DOI:10.1211/jpp/60.10.0014]
105. Oboh G, Ademiluyi AO and Akinyemi AJ. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp. Toxicol. Pathol. 2012; 64 (4): 315-9. [DOI:10.1016/j.etp.2010.09.004]
106. Rungsaeng P, Sangvanich P and Karnchanatat A. Zingipain, a ginger protease with acetylcholinesterase inhibitory activity. Appl. Biochem. Biotechnol. 2013; 170 (4): 934-50. [DOI:10.1007/s12010-013-0243-x]
107. Grzanna R, Phan P, Polotsky A, Lindmark L and Frondoza CG. Ginger extract inhibits beta-amyloid peptide-induced cytokine and chemokine expression in cultured THP-1 monocytes. J. Altern. Complement. Med. 2004; 10 (6): 1009-13. [DOI:10.1089/acm.2004.10.1009]
108. Ha SK, Moon E, Ju MS, Kim DH, Ryu JH, Oh MS and Kim SY. 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacol. 2012; 63 (2): 211-23. [DOI:10.1016/j.neuropharm.2012.03.016]
109. Kim DS, Kim JY and Han YS. Alzheimer's Disease Drug Discovery from Herbs: Neuroprotectivity from β-Amyloid (1-42) Insult. J. Altern. Complement. Med. 2007; 13 (3): 333-40. [DOI:10.1089/acm.2006.6107]
110. Lee C, Park GH, Kim CY and Jang JH. [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem. Toxicol. 2011; 49 (6): 1261-9. [DOI:10.1016/j.fct.2011.03.005]
111. Zeng GF, Zhang ZY, Lu L, Xiao DQ, Zong SH and He JM. Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats. Rejuvenation Res. 2013; 16 (2): 124-33. [DOI:10.1089/rej.2012.1389]
112. Saenghong N, Wattanathorn J, Muchimapura S, Tongun T, Piyavhatkul N, Banchonglikitkul C and Kajsongkram T. Zingiber officinale Improves Cognitive Function of the Middle-Aged Healthy Women. Evid. Based Complement. Alternat. Med. 2012; 2012: 383062. [DOI:10.1155/2012/383062]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb