year 24, Issue 96 (1-2026)                   J. Med. Plants 2026, 24(96): 22-36 | Back to browse issues page

Ethics code: IR.ALZAHRA.REC.1402.015

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoudi F, Hanachi P, Falak R, Mohammadi A. Green synthesis of gold nanoparticles using Zataria multiflora Boiss. extract and evaluation of antibacterial activity. J. Med. Plants 2026; 24 (96) :22-36
URL: http://jmp.ir/article-1-3985-en.html
1- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
2- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran , p.hanachi@alzahra.ac.ir
3- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
4- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
Abstract:   (8 Views)
Background: Nanoparticle applications are expanding across biomedical research. Plant extract–mediated (green) synthesis offers a sustainable and economically viable route for nanoparticle production. Objective: This study focused on the synthesis of gold nanoparticles (AuNPs) using Zataria multiflora Boiss extract and evaluated their antibacterial efficacy. Methods: AuNPs were synthesized using the aqueous extract of the Z. multiflora plant. The nanoparticles were characterized by UV–Vis spectroscopy, energy-dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta-potential measurements. The total phenolic content of the Z. multiflora extract was quantified using a gallic acid standard curve. Flavonoid content was measured using quercetin as the standard. Antioxidant capacity was assessed with ascorbic acid as the reference standard. The antibacterial activity of the synthesized AuNPs was evaluated by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and by disk diffusion assays. Results: Spectroscopy showed a peak for AuNPs at 530 nm. DLS revealed an average hydrodynamic diameter of 123.8 nm with a moderate size distribution. The zeta-potential was highly negative (-77.7 mV), indicating colloidal stability. AuNPs exhibited significant antibacterial activity against both S. aureus and E. coli in MIC, MBC, and disk diffusion assays. Conclusion: Z. multiflora extract effectively mediates the biosynthesis of stable AuNPs with notable antibacterial activity, supporting its potential for green nanomaterial synthesis in antimicrobial applications.
Full-Text [PDF 1370 kb]   (6 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2025/08/16 | Accepted: 2025/11/5 | Published: 2026/01/30

References
1. Manju S and Sreenivasan K. Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: Blood compatibility evaluation and targeted drug delivery onto cancer cells. J. Colloid and Interface Sci. 2012; 368: 144-151. [DOI:10.1016/j.jcis.2011.11.024]
2. Dash S.S, Sen I.K and Dash S.K. A review on the plant extract mediated green syntheses of gold nanoparticles and its anti-microbial, anti-cancer and catalytic applications. Int. Nano Lett. 2021; 12(1): 47 - 66. [DOI:10.1007/s40089-021-00358-6]
3. Cai F, Li Sh, Huang H, Iqbal J, Wang C and Jiang X. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. J. Biomed. Mater. Res. 2021; 110(2): 1-19. [DOI:10.1002/jbm.a.37281]
4. Dudhane A.A, Waghmode S.R, Dama L.B, Mhaindarkar V.P, Sonawane A and Katariya S. Synthesis and characterization of gold nanoparticles using plant extract of Terminalia arjuna with antibacterial activity. Int. J. Nanosci. Nanotechnol. 2019; 15(2): 75-82.
5. Bharadwaj K.K, Rabha B, Pati S, Sarkar T, Choudhury B.K, Barman A, Bhattacharjya D, Srivastava A, Baishya D, Edinur H.A, Abdul Kari Z and Mohd Noor N.H. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules. 2021; 26(21): 6389. [DOI:10.3390/molecules26216389]
6. Goshtasbi H, Awale S, Amini-Fazl M.S, Fathi M, Movafeghi A, Barar J and Omidi Y. Chitosan-graft-poly(lactide) nanocarriers: An efficient antioxidant delivery system for combating oxidative stress. Int. J. Biol. Macromol. 2024; 279(Pt 1): 135280. [DOI:10.1016/j.ijbiomac.2024.135280]
7. Jain N, Jain P, Rajput D and Patil U.K. Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. Micro Nano Syst. Lett. 2021; 9: 5. [DOI:10.1186/s40486-021-00131-6]
8. Shomali T and Mosleh N. Zataria multiflora, broiler health and performance: A review. IJVR. 2019; 20(2): 81-88.
9. Shokri H, Asadi F, Bahonar A.R and Khosravi A.R. The role of Zataria multiflora essence (Iranian herb) on innate immunity of animal model. Iran. J. Immunol. 2006; 3: 164-168.
10. Huang X, Qian W, El-Sayed I.H and El-Sayed M.A. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg. Med. 2007; 39(9): 747-753. [DOI:10.1002/lsm.20577]
11. Ying T-H, Yang S-F, Tsai S-J, Hsieh S-C, Huang Y-C, Bau D-T and Hsieh Y-H. Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8/caspase-3-dependent pathway. Arch. Toxicol. 2012; 86: 263-273. [DOI:10.1007/s00204-011-0754-6]
12. Saed M, Ayivi R.D, Wei J and Obare S.O. Gold nanoparticles antibacterial activity: Does the surface matter? Colloid Interface Sci. Commun. 2024; 62: 100804. [DOI:10.1016/j.colcom.2024.100804]
13. Diksha D, Gupta S.K, Gupta P, Banerjee U.C and Kalita D. Antibacterial potential of gold nanoparticles synthesized from leaf extract of Syzygium cumini against multidrug-resistant urinary tract pathogens. Cureus. 2023; 15(2): e34830. [DOI:10.7759/cureus.34830]
14. Baharara J, Ramezani T, Divsalar A, Mousavi M and Seyedarabi A. Induction of apoptosis by green synthesized gold nanoparticles through activation of Caspase-3 and 9 in human cervical cancer cells. Avicenna J. Med. Biotechnol. 2016; 8: 75-83.
15. Meamari S, Yavari AR and Bikdeloo M. Comparison of antioxidant activity, phenolic and flavonoid contents of Zataria multiflora populations in Iran. J. Med. Plants By-Prod. 2022; 11: 101-106.
16. Gharari Z, Hanachi P and Walker T.R. Green synthesized Ag-nanoparticles using Scutellaria multicaulis stem extract and their selective cytotoxicity against breast cancer. Anal. Biochem. 2022; 653: 114786. [DOI:10.1016/j.ab.2022.114786]
17. Brand-Williams W, Cuvelier M.E and Berset C. Use of a free radical method to evaluate antioxidant active. LWT-Food Sci. Technol. 1995; 28: 25-30. [DOI:10.1016/S0023-6438(95)80008-5]
18. Hanachi P, Gharari Z, Sadeghinia H and Walker TR. Synthesis of bioactive silver nanoparticles with eco-friendly processes using Heracleum persicum stem extract and evaluation of their antioxidant, antibacterial, anticancer and apoptotic potential. J. Mol. Struct. 2022; 1265: 133325. [DOI:10.1016/j.molstruc.2022.133325]
19. Muniyappan N, Pandeeswaran M and Amalraj A. Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: Its characterization, antimicrobial, antioxidant and anti-inflammatory activities. Environ. Chem. Ecotoxicol. 2021; 3: 117-124. [DOI:10.1016/j.enceco.2021.01.002]
20. Saputra I.S, Saputro A.H, Apriandanu D.O.B, Permana Y.N and Yulizar Y. Novel synthesis of gold nanoparticles using Parkia speciosa Hassk seed extract for enhanced foam stability in hand soap. Chem. Pap. 2022; 76(8): 4733-4742. [DOI:10.1007/s11696-022-02197-x]
21. Song J.Y, Jang H-K and Kim B.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Biochem. 2009; 44(10): 1133-1138. [DOI:10.1016/j.procbio.2009.06.005]
22. Singh P, Kim Y-J, Zhang D and Yang D-C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016; 34(7): 588-599. [DOI:10.1016/j.tibtech.2016.02.006]
23. Pourhosseini SH, Mirjalili MH, Ghasemi M, Ahadi H, Esmaeili H and Ghorbanpour M. Diversity of phytochemical components and biological activities in Zataria multiflora Boiss. (Lamiaceae) populations. S. Afr. J. Bot. 2020; 135: 148-157. [DOI:10.1016/j.sajb.2020.08.024]
24. Moein S, Pimoradloo E, Moein M and Vessal M. Evaluation of antioxidant potentials and α-amylase inhibition of different fractions of Labiatae plants extracts: as a model of antidiabetic compounds properties. Biomed. Res. Int. 2017; 2017(1): 7319504. [DOI:10.1155/2017/7319504]
25. Bindhani BK and Panigrahi AK. Green synthesis of gold nanoparticles using neem (Azadirachta indica L.) leaf extract and its biomedical applications. Int. J. Adv. Biotechnol. Res. 2014; 5: 457-464.
26. Lee SY, Krishnamurthy S, Cho C-W, Yun Y-S. Biosynthesis of gold nanoparticles using Ocimum sanctum extracts by solvents with different polarity. ACS Sustain. Chem. Eng. 2016; 4(5): 2651-2659. [DOI:10.1021/acssuschemeng.6b00161]
27. Gelehkolaei AS, Zakerimehr MR and Azizi MH. Evaluation of antioxidant and antimicrobial effects of hydroalcoholic and aqueous extracts of Zataria multiflora on increasing the shelf life of Lavash bread. J. Nat. Compd. Chem. 2022; 1(1): 33-44.
28. Fatemi F, Asri Y, Rasooli I, Alipoor SD and Shaterloo M. Chemical composition and antioxidant properties of γ-irradiated Iranian Zataria multiflora extracts. Pharm. Biol. 2012; 50(2): 232-238. [DOI:10.3109/13880209.2011.596208]
29. Elbagory AM, Hussein AA and Meyer M. The in vitro immunomodulatory effects of gold nanoparticles synthesized from Hypoxis hemerocallidea aqueous extract and hypoxoside on macrophage and natural killer cells. Int. J. Nanomedicine. 2019; 2019(14): 9007-9018. [DOI:10.2147/IJN.S216972]
30. Kamala Nalini SP, Vijayaraghavan K. Green synthesis of silver and gold nanoparticles using Aloe vera gel and determining its antimicrobial properties on nanoparticle impregnated cotton fabric. J. Nanotechnol Res. 2020; 2: 42-50. [DOI:10.26502/jnr.2688-85210015]
31. Elbagory AM, Hussein AA and Meyer M. The in vitro immunomodulatory effects of gold nanoparticles synthesized from Hypoxis hemerocallidea aqueous extract and hypoxoside on macrophage and natural killer cells. Int. J. Nanomedicine. 2019; 9007-9018. [DOI:10.2147/IJN.S216972]
32. Hanaor D, Michelazzi M, Leonelli C and Sorrell CC. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 2012; 32(1): 235-244. [DOI:10.1016/j.jeurceramsoc.2011.08.015]
33. Balasubramani G, Ramkumar R, Krishnaveni N, Sowmiya R, Deepak P, Arul D and Perumal P. GC-MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. J. Photochem. Photobiol. B. 2015; 148: 1-8. [DOI:10.1016/j.jphotobiol.2015.03.016]
34. Yılmazer Keskin S, Avcı A and Fajriana Febda Kurnia H. Analyses of phytochemical compounds in the flowers and leaves of Spiraea japonica var. fortunei using UV-VIS, FTIR, and LC-MS techniques. Heliyon. 2024; 10(3): e25496. [DOI:10.1016/j.heliyon.2024.e25496]
35. Aksoy A, Alazragi R, Alabdali AYM, Aljazzar R, El Sadi S, Alostaz M and El Hindi M. Antibacterial activity of metallic-core gold and silver nanoparticles against some animal pathogens. Ann. Anim. Sci. 2023; 23(2): 473-479. [DOI:10.2478/aoas-2023-0008]
36. Muniyappan N, Pandeeswaran M and Amalraj A. Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: its characterization, antimicrobial, antioxidant and anti-inflammatory activities. Environ. Chem. Ecotoxicol. 2021; 3: 117-124. [DOI:10.1016/j.enceco.2021.01.002]
37. Gouyau J, Duval RE, Boudier A and Lamouroux E. Investigation of nanoparticle metallic core antibacterial activity: gold and silver nanoparticles against Escherichia coli and Staphylococcus aureus. Int. J. Mol. Sci. 2021; 22(4): 1905. [DOI:10.3390/ijms22041905]
38. Timoszyk A and Grochowalska R. Mechanism and antibacterial activity of gold nanoparticles (AuNPs) functionalized with natural compounds from plants. Pharmaceutics. 2022; 14(12): 2599. [DOI:10.3390/pharmaceutics14122599]
39. Sánchez-lópez E, Gomes D, Esteruelas G, Bonilla L, Lopez-machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM, Durazzo A, Santini A, Garcia ML and Souto EB. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 2020; 10(2): 1-43. [DOI:10.3390/nano10020292]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb