year 23, Issue 91 (8-2024)                   J. Med. Plants 2024, 23(91): 64-74 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadzadeh A, Ghorbani N, Dastan K. Antifungal potential of the main compounds of Cuminum cyminum L. in targeting secreted aspartyl proteinase of Candida albicans compared to fluconazole. J. Med. Plants 2024; 23 (91) :64-74
URL: http://jmp.ir/article-1-3682-en.html
1- Department of Biology, Faculty of Science, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran , az.asadzadeh@nourdanesh.ac.ir
2- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
Abstract:   (462 Views)
Background: Candida albicans is naturally present in the normal human flora. This microorganism changes into an opportunistic fungus due to imbalances in microbiome composition, especially in an impaired immune system condition. The few available antifungal classes, severe toxicity, side effects, high cost, and the emergence of drug resistance are some of the limitations that physicians have in prescribing antifungal drugs. Objective: The current research aims to study the antifungal potential of the main compounds of Cuminum cyminum L. in inhibiting secreted aspartyl proteinase of C. albicans compared to fluconazole. Methods: In silico techniques were employed in this study. The main biochemicals of C. cyminum were obtained and optimized. 2D and 3D structures of chemical compounds were retrieved from the ChemSpider database and HyperChem software respectively. Auto Dock Vina and Discovery Studio 2024 Client were done to detect the potent inhibitor against the enzyme's active site. Finally, the physicochemical and toxicity properties of inhibitors were obtained. Results: The results of Auto Dock Vina indicated that Apigenin-7-O- glucoside has 80 percent similarity with fluconazole in the potential inhibition and exhibited a high free binding energy (ΔGbind: -10.48 kcal/mol). 13 amino acid residues involved in the interaction between best ligand and receptor that are Thr221, Asp32, Asp218, Asp86, Gly34, Ile123, Tyr84, Gly85, Ile30, Ser35, Ala119, Ile216, and Lys193. Conclusion: The present study affirmed that Apigenin-7-O- glucoside in C. cyminum could be a promising inhibitor against secreted aspartyl proteinase. However, there is still a need for clinical future investigations to support these findings.
Full-Text [PDF 920 kb]   (223 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2024/06/9 | Accepted: 2024/11/12 | Published: 2024/12/30

References
1. Macias-Paz IU, Pérez-Hernández S, Tavera-Tapia A, Luna-Arias JP, Guerra-Cárdenas JE and Reyna-Beltrán E. Candida albicans the main opportunistic pathogenic fungus in humans. Rev Argent Microbiol. 2023; 55(2): 189-198. [DOI:10.1016/j.ram.2022.08.003]
2. Fan FM, Liu Y, Liu Y, Lv R, Sun W, Ding WJ, Cai YX, Li WW, Liu X and Qu W. Candida albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. Int. J. Antimicrob. Agents. 2022; 60(5-6): 106673. [DOI:10.1016/j.ijantimicag.2022.106673]
3. Feng Y, Lu H, Whiteway M and Jiang Y. Understanding fluconazole tolerance in Candida albicans: implications for effective treatment of candidiasis and combating invasive fungal infections. J. Glob Antimicrob. Resist. 2023; 35: 314-321. [DOI:10.1016/j.jgar.2023.10.019]
4. Zhu X, Chen Y, Yu D, Fang W, Liao W and Pan W. Progress in the application of nanoparticles for the treatment of fungal infections: A review. Mycology. 2023; 15(1): 1-16. [DOI:10.1080/21501203.2023.2285764]
5. Vaou N, Stavropoulou E, Voidarou C, Tsigalou C and Bezirtzoglou E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms. 2021; 9(10): 2041. [DOI:10.3390/microorganisms9102041]
6. Mughal SS. A review on potential antioxidant effects of Cumin (Cuminum cyminum), phytochemical profile and its uses. Authorea. 2022. [DOI:10.22541/au.166401164.45578619/v1]
7. Shaheen HM, Bindebe SMLKB, Nyemb JN, Abdou JP, George J, Patil VR, Segueni N, Batiha GE. Ethnomedicinal uses, phytochemical, pharmacological and pharmacokinetics properties of Cumin (Cuminum cyminum). J. Phytopharmacol. 2023; 12(5): 315-325. [DOI:10.31254/phyto.2023.12507]
8. Chatterjee S, Paul P, Chakraborty P, Das S, Sarker RK, Sarkar S, Das A and Tribedi P. Cuminaldehyde exhibits potential antibiofilm activity against Pseudomonas aeruginosa involving reactive oxygen species (ROS) accumulation: a way forward towards sustainable biofilm management. 3 Biotech. 2021; 11(11): 485. [DOI:10.1007/s13205-021-03013-1]
9. Kulshrestha A and Gupta P. Secreted aspartyl proteases family: A perspective review on the regulation of fungal pathogenesis. Future Microbiol. 2023; 18(5): 295-309. [DOI:10.2217/fmb-2022-0143]
10. Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB and Oslan SN. Opportunistic yeast pathogen Candida spp.: Secreted and membrane-bound virulence factors. Med. Mycol. 2021; 59(12): 1127-1144. [DOI:10.1093/mmy/myab053]
11. Tóth R, Cabral V, Thuer E, Bohner F, Németh T, Papp C, Nimrichter L, Molnár G, Vágvölgyi C, Gabaldón T, Nosanchuk JD and Gácser A. Investigation of Candida parapsilosis virulence regulatory factors during host-pathogen interaction. Sci. Rep. 2018; 8(1): 1346. [DOI:10.1038/s41598-018-19453-4]
12. Rana VS. Chemical composition of the essential oil of Cuminum cyminum L. seeds from Western India. JMPB. 2014; 3(2): 207-10.
13. Mehdizadeh L, Ghasemi Pirbalouti A and Moghaddam M. Storage stability of essential oil of cumin (Cuminum cyminum L.) as a function of temperature. Inter. J. Food Properties 2017; 20(sup2): 1742-50. [DOI:10.1080/10942912.2017.1354018]
14. Haghju S and Almasi H. Antioxidant, antibacterial and therapeutic properties of some endemic medicinal plants of Iran: a review. Adv. Plants Agric. Res. 2015; 2(3): 146-153. [DOI:10.15406/apar.2015.02.00053]
15. Einafshar S, Poorazarang H, Farhoosh R and Asili J. Isolation and identification of antioxidants components from Cumin seed (Cuminum cyminum). Iranian Food Science and Technology Research Journal 2017; 12(6): 742-749.
16. Yoo YJ, Kim AR, Perinpanayagam H, Han SH and Kum KY. Candida albicans virulence factors and pathogenicity for endodontic infections. Microorganisms 2020; 8(9): 1300. [DOI:10.3390/microorganisms8091300]
17. Ezzat SM, Jeevanandam J, Egbuna C, Kumar S and Ifemeje JC. Phytochemicals as sources of drugs. Phytochemistry: An in-silico and in-vitro Update: 2019, pp: 3-22. [DOI:10.1007/978-981-13-6920-9_1]
18. Mnif S and Aifa S. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem. Biodivers. 2015; 12(5): 733-42. [DOI:10.1002/cbdv.201400305]
19. Shams Moattar F, Asadzadeh A, Heydari M, Zamani M, Esnaashari F and Jeldani F. Designing multi‐epitope subunit vaccine candidate for Zika virus utilizing in silico tools. RMM. 2022; 10(1): 9-18. [DOI:10.32598/rmm.10.1.1249.1]
20. Zolghadri S, Ghanbariasad A, Fallahian F, Rahban M, Kalavani M, Bahman Jahromi E, Asadzadeh A and Hajiani M. Anticancer activity of N-heteroaryl acetic acid salts against breast cancer; in silico and in vitro investigation. Mol. Biol. Rep. 2022; 49(1): 363-372. [DOI:10.1007/s11033-021-06881-1]
21. Naderi Kotaki M, Asadzadeh A and Heidaryan F. Study the effect of Thymus vulgaris in inhibiting acetylcholinesterase enzyme in order to treat Alzheimer's disease. J. Sabzevar Univer. Med. Sci. 2020; 27(5): 594-602.
22. Meylani V, Rizal Putra R, Miftahussurur M, Sukardiman S, Eko Hermanto F and Abdullah A. Molecular docking analysis of Cinnamomum zeylanicum phytochemicals against secreted aspartyl proteinase 4-6 of Candida albicans as anti-candidiasis oral. Results Chem. 2023; 5: 100721. [DOI:10.1016/j.rechem.2022.100721]
23. Meenambiga SS, Venkataraghavan R and Biswal A. In silico analysis of plant phytochemicals against secreted aspartic proteinase enzyme of Candida albicans. JAPS. 2018; 8(11): 140-150. [DOI:10.7324/JAPS.2018.81120]
24. Sulistyowaty MI, Putra GS, Budiati T, Indrianingsih AW, Anwari F, Kesuma D, Matsunami K and Yamauchi T. Synthesis, in silico study, antibacterial and antifungal activities of N-phenylbenzamides. IJMS. 2023; 24(3): 2745. [DOI:10.3390/ijms24032745]
25. Lum KY, Tay ST, Le CF, Lee VS, Sabri NH, Velayuthan RD, Hassan H and Sekaran SD. Activity of novel synthetic Peptides against Candida albicans. Sci. Rep. 2015; 5: 9657. [DOI:10.1038/srep09657]
26. Adel M, Dadar M, Zorriehzahra MJ, Elahi R and Stadtlander T. Antifungal activity and chemical composition of Iranian medicinal herbs against fish pathogenic fungus, Saprolegnia parasitica. Iranian Journal of Fisheries Sciences 2020; 19(6): 3239-54.
27. Huo YY, Li TT, Yang J, Huang H-Y, Chen C-J, Xu F-R and Dong X. Chemical constituents of the essential oil from Cuminum cyminum L. and its antifungal activity against Panax notoginseng pathogens. Chem. Biodiver. 2021; 18(12): e2100638. [DOI:10.1002/cbdv.202100638]
28. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T and Cao D. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021; 49(W1): W5-W14. [DOI:10.1093/nar/gkab255]
29. Dong J, Wang N-N, Yao Z-J, Zhang L, Cheng Y, Ouyang D, Lu A-P and Cao DS. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform. 2018; 10(1): 29. [DOI:10.1186/s13321-018-0283-x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb