year 23, Issue 89 (3-2024)                   J. Med. Plants 2024, 23(89): 17-31 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sundar B, Madhavan S. Evaluation of antioxidant and antimicrobial action of copper nanoparticles synthesized from Moringa oleifera pods. J. Med. Plants 2024; 23 (89) :17-31
URL: http://jmp.ir/article-1-3668-en.html
1- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Chennai, India
2- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Chennai, India , sankar7950@gmail.com
Abstract:   (930 Views)
Background: Moringa oleifera is a traditional South Indian medicinal plant and an excellent source of antioxidants. Objective: To evaluate the antimicrobial potential of copper nanoparticles (CuONPs) derived from Moringa oleifera pods against urinary tract-infecting microbes. Methods: Phyto constituents of the Moringa oleifera pod were screened. CuONPs were synthesized from Moringa oleifera pod, and it was characterized using UV-visible spectroscopy, FTIR, and SEM. Antioxidant activity of CuONPs was also determined. CuONPs discs at 50, 75, and 100 µg/ml were prepared and tested for antimicrobial action against Escherichia coli, Enterococcus faecalis, Klebsiella pneumonia, Streptococcus aureus, and Candida albicans. The integrity of the E.coli was assayed by determining the lactate dehydrogenase activity. Results: GCMS analysis revealed the presence of Di-n-Octyl Phthalate and 2, 2-diethoxy Propane presence in the Moringa oleifera pod. Antioxidant assay revealed the free radical scavenging property of CuONPs. UV- VIS confirmed the synthesis of CuONPs by showing the λ Vmax at 220nm. SEM analysis revealed the CuONPs size in 40 to 160nm. The FTIR analysis exhibited the presence of OH and C = C groups in the CuONPs. The klebsiella pneumoniae was the most susceptible strain for CuONPs, followed by Escherichia coli and Candida albicans. E. coli showed a significant LDH activity at high concentration of CuONPs. Conclusion: The CuONPs synthesized from the Moringa oleifera pod exhibited significant antimicrobial activity against the microbes.
Full-Text [PDF 1314 kb]   (579 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2024/05/15 | Accepted: 2024/07/20 | Published: 2024/09/11

References
1. Payal and Pandey P. Role of nanotechnology in electronics: A review of recent developments and patents. Recent Pat. Nanotechnol. 2022; 16(1): 45-66. [DOI:10.2174/1872210515666210120114504]
2. Joudeh N and Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnol. 2022; 20: 262. [DOI:10.1186/s12951-022-01477-8]
3. Mondal SK, Chakraborty S, Manna S and Mandal SM. Antimicrobial nanoparticles: current landscape and future challenges. RSC Pharmaceutics. 2024. [DOI:10.1039/D4PM00032C]
4. Abuzeid HM, Julien CM, Zhu L and Hashem AM. Green synthesis of nanoparticles and their energy storage, environmental, and biomedical applications. Crystals 2023; 13(11): 1576. [DOI:10.3390/cryst13111576]
5. Mayegowda SB, Sarma G, Gadilingappa MN, Alghamdi S, Aslam A, Refaat B, Almehmadi M, Allahyani M, Alsaiari AA, Aljuaid A and Al-Moraya IS. Green-synthesized nanoparticles and their therapeutic applications: A review. Green Processing and Synthesis. 2023; 12: 1-17. 20230001. [DOI:10.1515/gps-2023-0001]
6. Susanti D, Haris MS, Taher M and Khotib J. Natural products-based metallic nanoparticles as antimicrobial agents. Front. Pharmacol. 2022; 13: 895616. [DOI:10.3389/fphar.2022.895616]
7. Pradeep M, Kruszka D, Kachlicki P, Mondal D and Franklin G. Uncovering the phytochemical basis and the mechanism of plant extract-mediated eco-friendly synthesis of silver nanoparticles using ultra-performance liquid chromatography coupled with a photodiode array and high-resolution mass spectrometry. ACS Sustainable Chemistry & Engineering. 2021; 10(1): 562-71. [DOI:10.1021/acssuschemeng.1c06960]
8. Kashyap P, Kumar S, Riar CS, Jindal N, Baniwal P, Guiné RP, Correia PM, Mehra R and Kumar H. Recent advances in Drumstick (Moringa oleifera) leaves bioactive compounds: Composition, health benefits, bioaccessibility, and dietary applications. Antioxidants. 2022; 11(2): 402. [DOI:10.3390/antiox11020402]
9. Pop OL, Kerezsi AD and Ciont C. A comprehensive review of Moringa oleifera bioactive compounds-cytotoxicity evaluation and their encapsulation. Foods 2022; 11(23): 3787. [DOI:10.3390/foods11233787]
10. Virk P, Awad MA, Alsaif SS, Hendi AA, Elobeid M, Ortashi K, Qindeel R, El-Khadragy MF, Yehia HM, El-Din MF and Salama HA. Green synthesis of Moringa oleifera leaf nanoparticles and an assessment of their therapeutic potential. Journal of King Saud University-Science. 2023; 35(3): 102576. [DOI:10.1016/j.jksus.2023.102576]
11. Kalaiyan G, Suresh S, Prabu KM, Thambidurai S, Kandasamy M, Pugazhenthiran N, Kumar SK and Muneeswaran T. Bactericidal activity of Moringa oleifera leaf extract assisted green synthesis of hierarchical copper oxide microspheres against pathogenic bacterial strains. Journal of Environmental Chemical Engineering. 2021; 9(1): 104847. [DOI:10.1016/j.jece.2020.104847]
12. Haris Z and Ahmad I. Green synthesis of silver nanoparticles using Moringa oleifera and its efficacy against gram-negative bacteria targeting quorum sensing and biofilms. Journal of Umm Al-Qura University for Applied Sciences. 2024; 10(1): 156-67. [DOI:10.1007/s43994-023-00089-8]
13. Pagar K, Ghotekar S, Pagar T, Nikam A, Pansambal S, Oza R, Sanap D and Dabhane H. Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations. Asian Journal of Nanoscience and Materials. 2020; 3(1): 15-23. [DOI:10.1007/s42452-019-1389-0]
14. Ansar S, Tabassum H, Aladwan NS, Naiman Ali M, Almaarik B, AlMahrouqi S, Abudawood M, Banu N and Alsubki R. Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Scientific Reports. 2020; 10(1): 18564. [DOI:10.1038/s41598-020-74371-8]
15. Patel Rajesh M and Patel Natvar J. In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods. Journal of Advanced Pharmacy Education & Research. 2011; 1(1): 52-68.
16. Nishikimi M, Rao NA and Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications. 1972; 46(2): 849-54. [DOI:10.1016/S0006-291X(72)80218-3]
17. Smirnoff N and Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochem. 1989; 28(4): 1057-60. [DOI:10.1016/0031-9422(89)80182-7]
18. Srivastava AK and Dwivedi KN. Formulation and characterization of copper nanoparticles using Nerium odorum Soland leaf extract and its antimicrobial activity. International Journal of Drug Development and Research. 2018; 10: 29-34.
19. Kim J, Marshall MR and Wei CI. Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry. 1995; 43(11): 2839-45. [DOI:10.1021/jf00059a013]
20. Bauer AW, Kirby WM, Sherris JC and Turck M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathol. 1966; 45(4_ts): 493-6. pubmed.ncbi.nlm.nih.gov/5325707/. [DOI:10.1093/ajcp/45.4_ts.493]
21. Kalińska A, Jaworski S, Wierzbicki M and Gołębiewski M. Silver and copper nanoparticles-an alternative in future mastitis treatment and prevention?. Int. J. Mol. Sci. 2019; 20(7): 1672. [DOI:10.3390/ijms20071672]
22. Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, Dhama K, Ripon MKH, Gajdács M, Sahibzada MUK, Hossain MJ and Koirala N. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health. 2021; 14(12): 1750-66. [DOI:10.1016/j.jiph.2021.10.020]
23. Nishshankage K, Fernandez AB, Pallewatta S, Buddhinie PKC and Vithanage M. Current trends in antimicrobial activities of carbon nanostructures: potentiality and status of nanobiochar in comparison to carbon dots. Biochar. 2024; 6(1): 2. [DOI:10.1007/s42773-023-00282-2]
24. Fentie M, Chouhan G, Moges M and Tyagi P. Green synthesis of copper oxide nanoparticles using Bryophyllum pinnatum Leaf extract and its antibacterial potential against Listeria monocytogenes. IJHS. 2022; 6(S2): 5349-67. [DOI:10.53730/ijhs.v6nS2.6345]
25. Enders AA, North NM, Fensore CM, Velez-Alvarez J and Allen HC. Functional group identification for FTIR spectra using image-based machine learning models. Analytical Chem. 2021; 93(28): 9711-8. [DOI:10.1021/acs.analchem.1c00867]
26. Nzilu DM, Madivoli ES, Makhanu DS, Wanakai SI, Kiprono GK and Kareru PG. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Scientific Reports. 2023; 13(1): 14030. [DOI:10.1038/s41598-023-41119-z]
27. Nandiyanto ABD, Ragadhita R and Fiandini M. Interpretation of Fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. IJOST. 2023; 8(1): 113-26. [DOI:10.17509/ijost.v8i1.53297]
28. Preethi DRA and Philominal A. Green synthesis of pure and silver doped copper oxide nanoparticles using Moringa oleifera leaf extract. Materials Letters: X. 2022; 13: 100122. [DOI:10.1016/j.mlblux.2022.100122]
29. Anas Ahzaruddin AT, Nik Nasihah NR, Adam SH, Mutalib MA, Mokhtar MH and Tang SG. Phytofabrication of Selenium nanoparticles with Moringa oleifera (MO-SeNPs) and exploring its antioxidant and antidiabetic potential. Molecules 2023, 28(14): 5322. [DOI:10.3390/molecules28145322]
30. Asano N, Lu J, Asahina S and Takami S. Direct observation techniques using scanning electron microscope for hydrothermally synthesized nanocrystals and nanoclusters. Nanomaterials. 2021; 11(4): 908. [DOI:10.3390/nano11040908]
31. Andualem WW, Sabir FK, Mohammed ET, Belay HH and Gonfa BA. Synthesis of Copper oxide nanoparticles using plant leaf extract of Catha edulis and its antibacterial activity. J. Nanotechnol. 2020; 2020(1): 2932434. [DOI:10.1155/2020/2932434]
32. Shi YE, Ma J, Feng A, Wang Z and Rogach AL. Aggregation‐induced emission of copper nanoclusters. Aggregate. 2021; 2(6): e112. [DOI:10.1002/agt2.112]
33. Jabeen A, Khan A, Ahmad P, Khalid A, Wizrah MSI, Anjum Z, Alotibi S, Aloufi BH, Alanazi AM, Jefri OA and Ismail MA. Biogenic synthesis of levofloxacin-loaded copper oxide nanoparticles using Cymbopogon citratus: A green approach for effective antibacterial applications. Heliyon. 2024; 10(6): e27018. [DOI:10.1016/j.heliyon.2024.e27018]
34. Kamel SM, Elgobashy SF, Omara RI, Derbalah AS, Abdelfatah M, El-Shaer A, Al-Askar AA, Abdelkhalek A, Abd-Elsalam KA, Essa T and Kamran M. Antifungal activity of copper oxide nanoparticles against root rot disease in cucumber. Journal of Fungi. 2022; 8(9): 911. [DOI:10.3390/jof8090911]
35. Kim SH, Lee HS, Ryu DS, Choi SJ and Lee DS. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Microbiol. Biotechnol. Lett. 2011; 39(1): 77-85.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb