year 23, Issue 90 (5-2024)                   J. Med. Plants 2024, 23(90): 82-93 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholizadeh Farshi Z, Naziri Z, Derakhshandeh A, Raouf Fard F. Investigation of the antibacterial effect of Ferula foetida (Bunge) Regel oleo-gum-resin extracts and essential oil on methicillin-resistant Staphylococcus aureus and its simultaneous effect with vancomycin. J. Med. Plants 2024; 23 (90) :82-93
URL: http://jmp.ir/article-1-3629-en.html
1- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
2- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran , z.naziri@shirazu.ac.ir
3- Department of Horticultural Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
Abstract:   (200 Views)
Background: Nowadays, the decreased susceptibility of Staphylococcus aureus (S. aureus) to last-resort antibiotics such as vancomycin has caused concern in both human and veterinary medicine. Therefore, the need to find alternative treatments and new antibacterial agents is felt more than ever. Objective: The antibacterial effect and simultaneous effect of Ferula foetida (Bunge) Regel (F. foetida) oleo-gum-resin (OGR) extract and vancomycin on methicillin-resistant Staphylococcus aureus (MRSA) were investigated. Methods: Aqueous, ethanolic, a mixture of aqueous and ethanolic extracts, and essential oil were prepared from F. foetida OGR collected from Beyrut village, Sabzevar, Razavi Khorasan province, Iran. The Checkerboard method was used to determine the minimum inhibitory concentrations (MICs) of vancomycin and plant extracts and essential oil, and their simultaneous effects on MRSA (ATCC 33591). The minimum bactericidal concentrations (MBCs) of these agents were also determined. Ethanolic extract and essential oil of F. foetida OGR were analyzed using gas chromatography-mass spectrometry (GC-MS). Results: The MICs of vancomycin and aqueous, ethanolic, a mixture of aqueous and ethanolic extracts, and essential oil of F. foetida OGR were 0.00195 mg/ml, 8 mg/ml, 0.25 mg/ml, 0.5 mg/ml, and 256 mg/ml, respectively. The MBCs of these agents were 0.0078 mg/ml, 64 mg/ml, 0.5 mg/ml, 2 mg/ml, and more than 512 mg/ml, respectively. The simultaneous use of the extracts and essential oil of this plant with vancomycin on MRSA showed partial synergistic to additive effects. Conclusion: The combinations of F. foetida OGR extracts or essential oil with vancomycin are expected to reduce the effective dose of vancomycin against MRSA.
Full-Text [PDF 849 kb]   (73 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2024/03/2 | Accepted: 2024/10/1 | Published: 2024/10/26

References
1. Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM and Pantosti A. Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus. Curr. Top. Microbiol. Immunol. 2016; 409: 21-56. [DOI:10.1007/82_2016_3]
2. Khairullah AR, Sudjarwo SA, Effendi MH, Harijani N, Tyasningsih W, Rahmahani J, Permatasari DA, Ramandinianto SC, Widodo A and Riwu KHP. A review of methicillin-resistant Staphylococcus aureus (MRSA) on milk and milk products: public health importance. Syst. Rev. Pharm. 2020; 11(8): 59-69.
3. Wijesekara PNK, Kumbukgolla WW, Jayaweera JAAS and Rawat D. Review on usage of vancomycin in livestock and humans: maintaining its efficacy, prevention of resistance and alternative therapy. Vet. Sci. 2017; 4(1): 6. [DOI:10.3390/vetsci4010006]
4. Amman V, Basri DF and Huyop FZ. Determination of the post-antibiotic effect (PAE) of combinations of extracts from galls of Quercus. African J. Biotechnol. 2011; 10(79): 18274-18278.
5. Bhatnager R, Rani R and Dang AS. Antibacterial activity of Ferula asafoetida: A comparison of red and white type. J. Appl. Biol. Biotechnol. 2015; 3(2): 018-021.
6. Utegenova GA, Pallister KB, Kushnarenko SV, Özek G, Özek T, Abidkulova KT, Kirpotina LN, Schepetkin IA, Quinn MT and Voyich JM. Chemical composition and antibacterial activity of essential oils from Ferula L. species against methicillin-resistant Staphylococcus aureus. Molecules 2018; 23(7): 1679. [DOI:10.3390/molecules23071679]
7. Chamberlain DF. The identity of Ferula assa-foetida L. [drug plants]. United Kingdom: Notes from the royal botanic garden Edinburgh (UK); 1977: 229-233.
8. Chevallier A. The encyclopedia of medicinal plants. New York: DK publishing; 1996.
9. Bown D. The royal horticultural society encyclopedia of herbs & their uses. London: Dorling kindersley; 1995.
10. Özek G, Özek T, Işcan G, Başer KHC, Duran A and Hamzaoglu E. Composition and antimicrobial activity of the oils of Ferula szowitsiana DC. from Turkey. J. Essent. Oil Res. 2008; 20(2): 186-190. [DOI:10.1080/10412905.2008.9699987]
11. Alipour Z, Taheri P and Samadi N. Chemical composition and antibacterial activity of the essential oils from flower, leaf and stem of Ferula cupularis growing wild in Iran. Pharm. Biol. 2015; 53(4): 483-487. [DOI:10.3109/13880209.2014.924149]
12. Yadav VK, Das T, Harshey A, Yadav MM, Nigam K and Srivastava A. A forensic approach to evaluate the effect of different matrices and extraction solvents for the identification of diesel residue in simulated arson by GC-MS. Chromatographia. 2021; 84: 413-423. [DOI:10.1007/s10337-021-04022-1]
13. Bellio P, Fagnani L, Nazzicone L and Celenza G. New and simplified method for drug combination studies by checkerboard assay. MethodsX 2021; 8: 101543. [DOI:10.1016/j.mex.2021.101543]
14. Cha JD, Lee JH, Choi KM, Choi SM and Park JH. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus. ECAM. 2014; 2014(1): 450572. [DOI:10.1155/2014/450572]
15. Konaté K, Mavoungou JF, Lepengué AN, Aworet-Samseny RR, Hilou A, Souza A, Dicko MH and M'Batchi B. Antibacterial activity against β-lactamase producing methicillin and ampicillin-resistants Staphylococcus aureus: Fractional inhibitory concentration index (FICI) determination. Ann. Clin. Microbiol. Antimicrob. 2012; 11: 18.‏ [DOI:10.1186/1476-0711-11-18]
16. Adeniyi SA, Oyeku JS and Owan T. GC-MS analysis and biological roles of phytochemical compounds in n-hexane extract of Durio zibethinus Murr. seeds. J. Nat. Prod. 2024; 7(1): 9-19.
17. Li HY, Yang WQ, Zhou XZ, Shao F, Shen T, Guan HY, Zheng J and Zhang LM. Antibacterial and antifungal sesquiterpenoids: chemistry, resource, and activity. Biomolecules. 2022; 12(9): 1271. [DOI:10.3390/biom12091271]
18. Matsue M, Mori Y, Nagase S, Sugiyama Y, Hirano R, Ogai K, Ogura K, Kurihara S and Okamoto S. Measuring the antimicrobial activity of lauric acid against various bacteria in human gut microbiota using a new method. Cell Transplant. 2019; 28(12): 1528-1541. [DOI:10.1177/0963689719881366]
19. Dilika F, Bremner PD and Meyer JJM. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia 2000; 71(4): 450-452. [DOI:10.1016/S0367-326X(00)00150-7]
20. Charlet R, Le Danvic C, Sendid B, Nagnan-Le Meillour P and Jawhara S. Oleic acid and palmitic acid from Bacteroides thetaiotaomicron and Lactobacillus johnsonii exhibit anti-inflammatory and antifungal properties. Microorganisms 2022; 10(9): 1803. [DOI:10.3390/microorganisms10091803]
21. Vijayarohini P, Kavitha G, Alwar SBS and Swamidoss CMA. Antimicrobial activity of selective transition metal co-ordination complexes of myristic acid. Mater. Today Proc. 2020; 33(7): 4198-4205. [DOI:10.1016/j.matpr.2020.07.194]
22. Yoon BK, Jackman JA, Valle-González ER and Cho NJ. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018; 19(4): 1114. [DOI:10.3390/ijms19041114]
23. Mahizan NA, Yang SK, Moo CL, Song AAL, Chong CM, Chong CW, Abushelaibi A, Lim SHE and Lai KS. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 2019; 24(14): 2631. [DOI:10.3390/molecules24142631]
24. de Freitas BC, Queiroz PA, Baldin VP, do Amaral PH, Rodrigues LL, Vandresen F, R Caleffi-Ferracioli K, de L Scodro RB, Cardoso RF and Siqueira VLD. (-)-Camphene-based derivatives as potential antibacterial agents against Staphylococcus aureus and Enterococcus spp. Future Microbiol. 2020; 15(16): 1527-1534. [DOI:10.2217/fmb-2020-0131]
25. Kavoosi G and Rowshan V. Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: Effect of collection time. Food Chem. 2013; 138(4): 2180-2187. [DOI:10.1016/j.foodchem.2012.11.131]
26. Hadavand MH and Hasanloo T. Assessment of chemical composition of essential oil of Ferula assa-foetida oleo gum-resin from two different sites of Yazd province in center of Iran. R.J.P. 2014; 1(2): 51-54.
27. Zomorodian K, Saharkhiz J, Pakshir K, Immeripour Z and Sadatsharifi A. The composition, antibiofilm and antimicrobial activities of essential oil of Ferula assa-foetida oleo-gum-resin. Biocatal. Agric. Biotechnol. 2018; 14: 300-304. [DOI:10.1016/j.bcab.2018.03.014]
28. Hassanabadi M, Ebrahimi M, Farajpour M and Dejahang A. Variation in essential oil components among Iranian Ferula assa-foetida L. accessions. Ind. Crops Prod. 2019; 140: 111598. [DOI:10.1016/j.indcrop.2019.111598]
29. Alijaniha F, Emadi F, Naseri M, Bahaeddin Z and Dehparvar N. Some physicochemical and phytochemical characteristics of Iranian Ferula assa-foetida L. oleo-gum resin. J. Med. Plants 2023; 22(85): 89-97. [DOI:10.61186/jmp.22.85.89]
30. Basri DF, Xian LW, Abdul Shukor NI and Latip J. Bacteriostatic antimicrobial combination: antagonistic interaction between epsilon-viniferin and vancomycin against methicillin-resistant Staphylococcus aureus. Biomed. Res. Int. 2014; 2014(1): 461756. [DOI:10.1155/2014/461756]
31. Basri DF and Khairon R. Pharmacodynamic interaction of Quercus infectoria galls extract in combination with vancomycin against MRSA using microdilution checkerboard and time-kill assay. Evid. Based Complement Alternat. Med. 2012; 2012(1): 493156. [DOI:10.1155/2012/493156]
32. Watanakunakorn C. The antibacterial action of Vancomycin. Clinic. Infect. Dis. 1981; 3(Supp. 2): S210-S215. [DOI:10.1093/clinids/3.Supplement_2.S210]
33. Climo MW, Patron RL and Archer GL. Combinations of vancomycin and β-lactams are synergistic against staphylococci with reduced susceptibilities to Vancomycin. Antimicrob. Agents Chemother. 1999; 43(7): 1747-1753. [DOI:10.1128/AAC.43.7.1747]
34. Marsot A, Boulamery A, Bruguerolle B and Simon N. Vancomycin: A review of population pharmacokinetic analyses. Clin. Pharmacokinet. 2012; 51(1): 1- 13. [DOI:10.2165/11596390-000000000-00000]
35. Patil SD, Shinde S, Kandpile P and Jain AS. Evaluation of antimicrobial activity of Asafetida. IJPSR. 2015; 6(2): 722-27.
36. Jomehpour N, Eslami G and Khalili MB. The effect of Ferula assa-foetida L and Carum copticum hydroalcoholic extract on the expression levels of Staphylococcus aureus genes involved in quorum sensing. Jundishapur J. Microbiol. 2016; 9(10): e33879. [DOI:10.5812/jjm.33879]
37. Samadi N, Shahani S, Akbarzadeh H, Mohammadi-Motamed S, Safaripour E, Farjadmand F, Eftekhari M, Monsef-Esfahani HR and Khanavi M. Essential oil analysis and antibacterial activity of Ferula assa-foetida L. aerial parts from Neishabour mountains. RJP. 2016; 3(3): 35-42.
38. Basri DF and Sandra V. Synergistic interaction of methanol extract from Canarium odontophyllum Miq. Leaf in combination with oxacillin against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591. Int. J. Microbiol. 2016; 2016. [DOI:10.1155/2016/5249534]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb