year 22, Issue 87 (12-2023)                   J. Med. Plants 2023, 22(87): 97-113 | Back to browse issues page

Research code: 9311266020
Ethics code: IR.TUMS.TIPS.REC.1400.182

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tofighi Z, Khoshayand M R, Besati M, Pirali Hamedani M, Hadjiakhoondi A, Khorshidi A, et al . The optimization of Fenugreek seeds (Trigonella foenum-graecum L.) extraction by response surface methodology based on β-Sitosterol. J. Med. Plants 2023; 22 (87) :97-113
1- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
2- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Iran
3- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
4- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
5- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
6- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran ,
Abstract:   (287 Views)
Background: Fenugreek is one of the most widely used medicinal plants in terms of therapeutic properties, and numerous pharmacological effects have been found in various studies. Fenugreek seed extract contains many effective substances, including phytosterols (mainly β-Sitosterol). Objective: This investigation was conducted to determine the optimal extraction method for fenugreek seeds based on the amount of β-Sitosterol detected on HPLC using a response surface methodology (RSM). Methods: At first, the appropriate solvent was selected. The main variables affecting the extraction efficiency, including temperature, time, solvent percentage, and the ratio of solvent to powder, were investigated to optimize the best method. Optimizing the number of 29 experiments determined that extraction was done using the dynamic maceration method. After finding the optimized method, the extracts were injected into the HPLC device three times to determine the amount of total β-Sitosterol. Then it was modelled, and the final formula was obtained. Results: The analysis of results were shown that the optimal extract (based on the amount of total β-Sitosterol and weight), using the dynamic maceration extraction method with 96 % ethanol at a temperature of 44 ˚C, a duration of 30 minutes, a solvent percentage of 70 % and a ratio of solvent to powder of 7:1 was obtained. Conclusion: The findings suggest the, this method seams the most efficient for maximum extraction of the β-Sitosterol compound from fenugreek seeds.
Full-Text [PDF 1274 kb]   (171 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2023/10/23 | Accepted: 2024/02/5 | Published: 2023/12/31

1. Moradi P, Hassan Dokht MR and Kashi AK. Genetic diversity in some characteristics of Iranian fenugreek (Trigonella foenum graceum L.). J. Crop Ecophysiol. 2011; 4(16): 55-70.
2. Tucker AO and DeBaggio T. The encyclopedia of herbs: A comprehensive reference to herbs of flavor and fragrance. Timber Press; 2009.
3. Dini M. Scientific name of medicinal plants used in traditional medicine. Forest and Rangeland Research Institute Publication, Iran. 2006: 299-300.
4. Shahat M. The analytical constants and composition of fatty acids of Egyptian fenugreek oil. In: Proceedings of the 11th Congress in Pure and Applied Chemistry, London. 1947: 569-575.
5. Badami R and Kalburgi G. Component acids of Trigonella foenum-graecum (Fenugreek) seed oil. The Karnatak University Journal Science. 1969; 14: 16-19.
6. Baccou JC, Sauvaire Y, Olle M and Petit J. L'huile de fenugrec: composition, propriétés, possibilités d'utilisation dans l'industrie des peintures et vernis. 1978, pp: 353-367.
7. Wolfram G. ω‐3‐und ω‐6‐Fettsäuren-Biochemische Besonderheiten und biologische Wirkungen. Lipid/Fett. 1989; 91 (12): 459-468. [DOI:10.1002/lipi.19890911202]
8. Sulieman AME, Ali AO and Hemavathy J. Lipid content and fatty acid composition of fenugreek (Trigonella foenum‐graecum L.) seeds grown in Sudan. Inter. J. Food Sci. & Technol. 2008; 43(2): 380-382. [DOI:10.1111/j.1365-2621.2006.01446.x]
9. Kinsella JE, Lokesh B and Stone RA. Dietary n-3 polyunsaturated fatty acids and amelioration of cardiovascular disease: possible mechanisms. Am. J. Clin. Nutr. 1990; 52(1): 1-28. [DOI:10.1093/ajcn/52.1.1]
10. Harris WS. n-3 fatty acids and serum lipoproteins: human studies. Am. J. Clin. Nutr. 1997; 65(Supp. 5): 1645-1654. [DOI:10.1093/ajcn/65.5.1645S]
11. Hasanzadeh E, Rezazadeh S, Shamsa S, Dolatabadi R and Zarringhalam J. Review on phytochemistry and therapeutic properties of fenugreek (Trigonella foenum-graceum). J. Med. Plants. 2010; 9(34): 1-18.
12. Varshney I and Sharma S. Saponins XXXII Trigonella foenum graecum seeds. J. Indian Chem. Soc. 1996; 43: 564-567.
13. Diwani N, Fakhfakh J, Athmouni K, Belhaj D, El Feki A, Allouche N, Ayadi H and Bouaziz-Ketata H. Optimization, extraction, structure analysis and antioxidant properties of flavan-3-ol polymers: Proanthocyanidins isolated from Periploca angustifolia using surface response methodology. Industrial Crops and Products. 2020; 144: 112040. [DOI:10.1016/j.indcrop.2019.112040]
14. "Compound summaray: Beta-Sitosterol." National Library of Medicine. 2022.
15. Chary GHVC and Dastidar MG. Investigation of optimum conditions in coal-oil agglomeration using Taguchi experimental design. Fuel. 2012; 98: 259-264. [DOI:10.1016/j.fuel.2012.03.027]
16. Kostrzewa D, Dobrzyńska-Inger A and Turczyn A. Optimization of supercritical carbon dioxide extraction of sweet paprika (Capsicum annuum L.) using response surface methodology. Chemical Engineering Research and Design. 2020; 160: 39-51. [DOI:10.1016/j.cherd.2020.05.005]
17. Tušek AJ, Benković M, Valinger D, Jurina T, Belščak-Cvitanović A and Kljusurić JG. Optimizing bioactive compounds extraction from different medicinal plants and prediction through nonlinear and linear models. Industrial Crops and Products. 2018; 126: 449-458. [DOI:10.1016/j.indcrop.2018.10.040]
18. "Design-Expert® Software." State-Ease Inc. 2021: /software/ downl%0Aoads-updates.html.
19. Massart DL, Vandeginste BGM, Buydens LMC, Jong SDE, Lewi PJ and Smeyers-Verbeke J. Handbook of chemometrics and qualimetrics. J. Chem. Inform. and Computer Sci. 1998; 38(6): 1254. [DOI:10.1021/ci980427d]
20. Swamy Gowda MR, Mahesh HM, Sharada MS and Sudhakar P. Host-pathogen interactions of Tomato and Fusarium oxysporum F. sp. lycopersici pathogen causing wilt and its control through botanical extract. International Journal of Current Research in Life Sciences. 2018; 7(3): 1345-1350.
21. Desai S, Tatke P, Mane T and Gabhe S. Isolation, characterization and quantitative HPLC-DAD analysis of components of charantin from fruits of Momordica charantia. Food Chem. 2021; 345: 128717. [DOI:10.1016/j.foodchem.2020.128717]
22. Wei D, Wang L, Liu C and Wang B. β-Sitosterol solubility in selected organic solvents. Journal of Chemical & Engineering Data. 2010; 55(8): 2917-2919. [DOI:10.1021/je9009909]
23. Busch TP and King AJ. Stability of cholesterol, 7-ketocholesterol and β-sitosterol during saponification: ramifications for artifact monitoring of sterol oxide products. J. Am. Oil Chemists' Soci. 2010; 87(9): 955-962. [DOI:10.1007/s11746-010-1572-3]
24. Majeed M, Hussain AI, Chatha SAS, Khosa MKK, Kamal GM, Kamal MA, Zhang X and Liu M. Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology. Saudi Journal of Biological Sciences. 2016; 23(3): 389-396. [DOI:10.1016/j.sjbs.2015.04.010]
25. Lee JW, Mo EJ, Choi JE, Jo YH, Jang H, Jeong JY, Mo EJ, Choi JE, Jo TH, Jang H, Jeong JY, Jin Q, Chung HN, Hwang BY and Lee MK. Effect of Korean red Ginseng extraction conditions on antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content: optimization using response surface methodology. J Ginseng Res. 2016; 40(3): 229-236. [DOI:10.1016/j.jgr.2015.08.001]
26. Hammi KM, Jdey A, Abdelly C, Majdoub H and Ksouri R. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chem. 2015; 184: 80-89. [DOI:10.1016/j.foodchem.2015.03.047]
27. Wu X, Yu X and Jing H. Optimization of phenolic antioxidant extraction from Wuweizi (Schisandra chinensis) pulp using random-centroid optimazation methodology. IJMS. 2011; 12(9): 6255-6266. [DOI:10.3390/ijms12096255]
28. Ciftci ON, Przybylski R, Rudzinska M and Acharya S. Characterization of fenugreek (Trigonella foenum‐graecum) seed lipids. J. Am. Oil Chem. Soci.. 2011; 88(10): 1603-1610. [DOI:10.1007/s11746-011-1823-y]
29. Meireles MAA. Extracting bioactive compounds for food products: theory and applications. CRC press; 2008. [DOI:10.1201/9781420062397]
30. Iranmanesh M, Mohebbati R, Forouzanfar F, Roshan MK, Ghorbani A, Nik MJ and Soukhtanloo M. In vivo and In vitro effects of ethanolic extract of Trigonella foenum-graecum L. seeds on proliferation, angiogenesis and tube formation of endothelial cells. Res. Pharm. Sci. 2018; 13(4): 343. [DOI:10.4103/1735-5362.235161]
31. Khalki L, M'hamed SB, Bennis M, Chait A and Sokar Z. Evaluation of the developmental toxicity of the aqueous extract from Trigonella foenum-graecum (L.) in mice. J. Ethnopharmacol. 2010; 131(2): 321-325. [DOI:10.1016/j.jep.2010.06.033]
32. Shailajan S, Menon S, Singh A, Mhatre M and Sayed N. A validated RP-HPLC method for quantitation of trigonelline from herbal formulations containing Trigonella foenum-graecum (L.) seeds. Pharm. Methods. 2011; 2(3): 157-160. [DOI:10.4103/2229-4708.90354]
33. Jasim B, Thomas R, Mathew J and Radhakrishnan EK. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal. 2017; 25(3): 443-447. [DOI:10.1016/j.jsps.2016.09.012]
34. Bogdanovic A, Tadic V, Ristic M, Petrovic S and Skala D. Optimization of supercritical CO2 extraction of fenugreek seed (Trigonella foenum-graecum L.) and calculating of extracts solubility. The Journal of Supercritical Fluids. 2016; 117: 297-307. [DOI:10.1016/j.supflu.2016.07.010]
35. Yang J, Zhang Z, Wu Q, Ding X, Yin C, Yang E, Sun D, Wang W, Yang Y and Guo F. Multiple responses optimization of antioxidative components extracted from Fenugreek seeds using response surface methodology to identify their chemical compositions. Food Sci. Nut. 2022; 10(10): 3475-3484. [DOI:10.1002/fsn3.2949]
36. Devi UA, Odelu G, Prasad BR, Venkateshwarlu M and Ugandhar T. Enhancement of secondary metabolites in tissue culture of a medicinal plant: Trigonella foenum-graecum L. The Journal of Indian Botanical Society. 2019; 98(1and2): 71-78. [DOI:10.5958/2455-7218.2019.00008.1]
37. Ezzell JL. Pressurized fluid extraction: non-environmental applications. Dionex Corporation, Salt Lake City Technical Center, Salt Lake City, UT, USA. p. 3993-3996. [DOI:10.1016/B0-12-226770-2/02331-0]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb