year 22, Issue 86 (5-2023)                   J. Med. Plants 2023, 22(86): 44-61 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rafiee H, Mehrafarin A, Naghdi Badi H, Khalighi-Sigaroodi F, Jabbari E, Ramawat N. Alleviation of low temperatures injury on lemon verbena (Lippia citriodora H.B.K.) by exogenous application of adjuvants in anti-chilling formulations. J. Med. Plants 2023; 22 (86) :44-61
1- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Shahed University, Tehran, Iran ,
3- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran-Qom Express Way, Tehran, Iran; Medicinal Plants Research Center, Shahed University, Tehran, Iran
4- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
5- Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
6- Department of Agronomy, Agriculture University Jodhpur, Rajasthan, India
Abstract:   (600 Views)
Background: Lemon verbena (Lippia citriodora H.B.K) from Verbenaceae is a sensitive plant to low temperatures as abiotic stress. Objective: The objective of this research was to evaluate the effects of adjuvants and anti-chilling formulations on lemon verbena (Lippia citriodora H.B.K) leaves under low temperatures. Methods: The combined analysis was done on the basis of a randomized complete blocks design (RCBD) with 28 treatments and 3 replications. The three factors included two anti-chilling formulations (glycerol, and glycerol + polyvinyl alcohol), seven adjuvants formulations (α-tocopherol, amino acids of proline + glycine-betaine, and ABA), and two levels of low temperature (5 and 10 °C). Results: The treatment of glycerol + proline + glycine-betaine + ABA reduced the damaging effects of low temperature in biomass, essential oil content, and osmoprotectants, while the highest protection by antioxidant pigments was obtained in glycerol + α-tocopherol + ABA. Enzymes activities and polyphenol content showed the best results by glycerol + ABA. Conclusion: The best formulations were glycerol + proline + glycine-betaine + ABA and glycerol + ABA from the viewpoint of economic yield and also qualitative protection against low temperature, respectively. The efficiency of the mentioned formulations was due to their direct protective function and the indirect influence of adjuvants in a synergistic interaction with other components of the formulation.
Full-Text [PDF 729 kb]   (240 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2023/04/23 | Accepted: 2023/07/16 | Published: 2023/05/31

1. Oliva MDLM, Beltramino E, Gallucci N, Casero C, Zygadlo J and Demo M. Antimicrobial activity of essential oils of Aloysia triphylla (L'Her.) Britton from different regions of Argentina. Boletin Latinoamericano Y Del Caribe de Plantas Medicinales Y Aromaticas. 2010; 9(1): 29-37.
2. Santos-Gomes PC, Fernandes-Ferreira M and Vicente AMS. Composition of the essential oils from flowers and leaves of Vervain (Aloysia triphylla (L'Herit.) Britton) grown in Portugal. J. Essent. Oil Res. 2005; 17(1): 73-78. [DOI:10.1080/10412905.2005.9698835]
3. Heidarvand L and Maali Amiri R. What happens in plant molecular responses to cold stress? Acta Physiol. Plant. 2010; 32: 419-431. [DOI:10.1007/s11738-009-0451-8]
4. Gill SS and Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010; 48(12): 909-930. [DOI:10.1016/j.plaphy.2010.08.016]
5. Chavan MJ, Shinde DB and Nirmal SA. Major volatile constituents of Annona squamosal L., bark. Nat. Prod. Res. 2006; 20(8): 754-757. [DOI:10.1080/14786410500138823]
6. Zhang Y, Smith P, Maximova SN and Guiltinan MJ. Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of Theobroma cacao. Mol. Plant. Pathol. 2015; 16: 27-37. [DOI:10.1111/mpp.12158]
7. Awada H and Daneault C. Chemical modification of Poly (Vinyl Alcohol) in water. Appl. Sci. 2015; 5(4): 840-850. [DOI:10.3390/app5040840]
8. Rasch A, Hunsche M, Mail M, Burkhardt J, Noga G and Pariyer Sh. Agricultural adjuvants may impair leaf transpiration and photosynthetic activity. Plant Physiol. Biochem. 2018; 132: 239-237. [DOI:10.1016/j.plaphy.2018.08.042]
9. Tu M, Randall JM. Adjuvants. Weed Control Methods Handbook, The Nature Conservancy. 2010.
10. Chang Yoon J, Yun-Hee K, Ho Soo K, Qingbo K, Gun-Woo K, Sung-Chul P, Haeng-Soon L, Jae Cheol J and Sang-Soo K. Molecular characterization of tocopherol biosynthetic genes in sweetpotato that respond to stress and activate the tocopherol production in tobacco. Plant Physiol. Biochem. 2016; 106: 118-128. [DOI:10.1016/j.plaphy.2016.04.037]
11. Zouari M, Elloumi N, Ben Ahmed C, Delmail D, Ben Rouina B, Ben Abdallah F and Labrousse P. Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm (Phoenix dactylifera L.). Ecol. Eng. 2016; 86: 202-209. [DOI:10.1016/j.ecoleng.2015.11.016]
12. Szepesi Á and Szőllősi R. Mechanism of proline biosynthesis and role of proline metabolism enzymes under environmental stress in plants. Plant Metabolites and Regulation Under Environmental. 2018; 337-353. [DOI:10.1016/B978-0-12-812689-9.00017-0]
13. Wang L, Shan T, Xie B, Ling C, Shao S, Jin P and Zheng Y. Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chem. 2018; 272: 530-538. [DOI:10.1016/j.foodchem.2018.08.085]
14. Liang JS and Zhang JH. The relations of stomatal closure and reopening to xylem ABA concentration and leaf water potential during soil drying and rewatering. Plant Growth Regul. 1999; 29: 77-86. [DOI:10.1023/A:1006207900619]
15. Li CY, Junttila O, Heino P and Palva ET. Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiol. 2003; 23(7): 481-7. [DOI:10.1093/treephys/23.7.481]
16. Arnon AN. Method of extraction of chlorophyll in the plants. Agro. J. 1967; 23: 112-121.
17. Bates LE, Waldren RP and Teare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973; 39: 205-7. [DOI:10.1007/BF00018060]
18. Bradford MM. A rapid and sensitive method for the quantitation of microgram of protein 18 utilizing the principle of protein-dye binding. Anal Biochem 1967; 72(1-2): 248-54. [DOI:10.1016/0003-2697(76)90527-3]
19. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965; 16: 44-158. [DOI:10.5344/ajev.1965.16.3.144]
20. Dubois M, Gilles KA, Hamilton JK, Rebers PA and Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956; 28(3): 350-56. [DOI:10.1021/ac60111a017]
21. Kato M and Shimizu S. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canad. J. Bot. 1987; 65: 729-35. [DOI:10.1139/b87-097]
22. Asada K. Ascorbat peroxidase - a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 1992; 85: 235-41. [DOI:10.1034/j.1399-3054.1992.850216.x]
23. Nakano Y and Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981; 22(5): 867-880.
24. Giannopolitis CN and Ris SK. Superoxide dismutases. I. Occurrence in higher plants. Physiol. Plant. 1977; 59(2): 309-14. [DOI:10.1104/pp.59.2.309]
25. Velikova V, Yordanov I and Edreva A. Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci. 2000; 151(1): 59-66. [DOI:10.1016/S0168-9452(99)00197-1]
26. The European Pharmacopoeia Convention Inc. European Pharmacopoeia. 3rd ed., Strasbourg: Council of Europe, 1997.
27. Kuk Y, Shin JS, Whang T and Guh J. Mechanisms of chilling tolerance in relation to antioxidative enzymes in rice. Korean J. Crop Sci. 2002; 47: 341-351.
28. Chalker-Scott L. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 2008; 70(1): 1-9. [DOI:10.1111/j.1751-1097.1999.tb01944.x]
29. Duan M, Feng H, Wang LY, Li D and Meng QW. Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. J. Plant Physiol. 2012; 169(9): 867-877. [DOI:10.1016/j.jplph.2012.02.012]
30. Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF and Xiong LZ. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. J Plant Molecu 2009; 2(1): 73-83. [DOI:10.1093/mp/ssn068]
31. Cao S, Song C, Shao J, Bian K, Chen W and Yang Z. Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. J. Agric. Food Chem. 2016; 64(25): 5215-5222. [DOI:10.1021/acs.jafc.6b01118]
32. Huang M and Guo Z. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plant. 2005; 49: 81-84. [DOI:10.1007/s00000-005-1084-3]
33. Luo H, Li H, Zhang X and Fu J. Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicol. 2011; 20(4): 770-778. [DOI:10.1007/s10646-011-0628-y]
34. Cassandra RM, Derrick MO. Effects of glycine betaine and water regime on diverse cotton cultivars. Proc 2000 Cotton Res Meet 2000; 109-112.
35. Lukatkin AS, Brazaityte A, Bobinas C and Duchovskis P. Chilling injury in chilling-sensitive plants: a review. Žemdirb. Agric. 2012; 99(2): 111-124.
36. Kanayama Y. Physiological roles of polyols in horticultural crops. J. Japan. Soc. Hort. Sci. 2009; 78(2): 158-168. [DOI:10.2503/jjshs1.78.158]
37. Makela P, Peltonen-Sainio P, Jokinen K, Pehu E, Setala H, Hinkkanen R and Somersalo S. Uptake and translocation of foliar-applied glycine betaine in crop plants. Plant Sci. 1996; 121(2): 221-230. [DOI:10.1016/S0168-9452(96)04527-X]
38. Hussain M, Malik MA, Farooq M, Ashraf MY and Cheema MA. Improving drought tolerance by exogenous application of glycine betaine and salicylic acid in sunflower. J. Agron. Crop. Sci. 2008; 194(3): 193-199. [DOI:10.1111/j.1439-037X.2008.00305.x]
39. Sadak MS, Dawood MG. Role of ascorbic acid and α tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.). J. Stress Physiol. Biochem. 2014; 10: 93-111.
40. Victoria F, Victor D, Javier A and Anunciacion A. Foliar iron fertilization of peach (Prunus persica (L.) Batsch): Effects of iron compounds, surfactants and other adjuvants. Plant Soil. 2006; 289: 239-252. [DOI:10.1007/s11104-006-9132-1]
41. Wani AS, Faraz A, Faizan M, Ahmad A, Hayat Sh and Tahir I. Foliar spray of proline enhanced the photosynthetic efficiency and antioxidant system in Brassica juncea. Not. Bot. Horti Agrobo. Cluj-Napoca. 2017; 45(1): 112-119. [DOI:10.15835/nbha45110375]
42. Farooq M, Aziz T, Hussain M, Rehman H, Jabran K and Khan MB. Glycine betaine improves chilling tolerance in hybrid maize. J. Agron. Crop Sci. 2008; 194(2): 152-160. [DOI:10.1111/j.1439-037X.2008.00295.x]
43. Khan AA, Mcneilly T and Collins JC. Accumulation of amino acids, proline, and carbohydrates in response to aluminum and manganese stress in maize. J. Plant Nutr. 2000; 23(9): 1303-1314. [DOI:10.1080/01904160009382101]
44. Shao HB, Chu LY, Lu ZH and Kang CM. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. J. Biol. Sci. 2008; 4(1): 8-14. [DOI:10.7150/ijbs.4.8]
45. He J, Jin Y, Palta JA, Liu HY, Chen Z and Li FM. Exogenous ABA induces osmotic adjustment, improves leaf water relations and water use efficiency, but not yield in soybean under water stress. Agron. 2019; 9(7): 395. [DOI:10.3390/agronomy9070395]
46. Dashnau JL, Nucci NV, Sharp KA and Vanderkooi JM. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J. Phys. Chem. B 2006; 110: 13670-13677. [DOI:10.1021/jp0618680]
47. Shinozaki K and Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 2000; 3(3): 217-223. [DOI:10.1016/S1369-5266(00)80068-0]
48. Makela P, Jokinen K, Kontturi M, Peltonen-Sainio P and Pehu E and Somersalo S. Foliar application of glycine betaine - a novel product from sugar beet - as an approach to increase tomato yield. Indust. Crops Prod. 1998; 7(2-3): 139-148. [DOI:10.1016/S0926-6690(97)00042-3]
49. Dubey V and Daschakraborty S. Influence of glycerol on the cooling effect of pair hydrophobicity in water: relevance to proteins' stabilization at low temperature. Phys. Chem. Chem. Phys. 2019; 21(2): 800. [DOI:10.1039/C8CP06513F]
50. Orabi SA, Abdelhamid MT. Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J. Saudi Soc. Agric. Sci. 2016; 15(2): 145-154. [DOI:10.1016/j.jssas.2014.09.001]
51. Jiang M and Zhang J. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radical Res. 2002; 36(9): 1001-1015. [DOI:10.1080/1071576021000006563]
52. Dawood MG, Taie HAA, Nassar RMA, Abdelhamid MT and Schmidhalter U. The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South Afr. J. Bot. 2014; 93: 54-63. [DOI:10.1016/j.sajb.2014.03.002]
53. den Ende WV and Valluru R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 2009; 60(1): 9-18. [DOI:10.1093/jxb/ern297]
54. Takagi H. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl. Microbiol. Biotechnol. 2008; 81: 211-223. [DOI:10.1007/s00253-008-1698-5]
55. Hare PD and Cress WA. Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul. 1997; 21(2): 79-102. [DOI:10.1023/A:1005703923347]
56. Khan TA, Mazid M and Quddusi S. Role of organic and inorganic chemicals in plant-stress mitigation. In: Gaur R, Sharma P (eds.) Approaches to plant stress and their management. Springer, India, 2014; 39-52. [DOI:10.1007/978-81-322-1620-9_3]
57. Schönherr J and Bukovac MJ. Penetration of stomata by liquids: Dependence on surface tension, wettability and stomatal morphology. Plant Physiol. 1972; 49(5): 813-9. [DOI:10.1104/pp.49.5.813]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb