year 20, Issue 80 (12-2021)                   J. Med. Plants 2021, 20(80): 102-116 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kapali J, Sharma K R. Estimation of phytochemicals, antioxidant, antidiabetic and brine shrimp lethality activities of some medicinal plants growing in Nepal. J. Med. Plants. 2021; 20 (80) :102-116
URL: http://jmp.ir/article-1-3207-en.html
1- Central Department of Chemistry, Tribhuvan University, Kirtipur Kathmandu, Nepal
2- Central Department of Chemistry, Tribhuvan University, Kirtipur Kathmandu, Nepal , ksharma@cdctu.edu.np
Abstract:   (1077 Views)
Background: Extreme production of free radicals in the human body causes direct damage to biological molecules that leads to the different types of diseases. The natural or synthetic antioxidants inhibit directly the production or restrict propagation or nullify the free radicals produced in the human body to protect the immune system. Objective: This study aims to quantify the total phenolic and flavonoid content, antioxidant and antidiabetic activities and toxicity test for the methanol extracts of aerial parts of traditionally used medicinal plants like Ageratina adenophora (Spreng.) R.M.King & H.Rob., Cupressus sempervirens L. and Lantana camara L. Methods: The total phenolic content (TPC) was estimated by Folin-Ciocalteu reagent method and the total flavonoid content (TFC) by aluminum chloride assay. The α-amylase inhibition activity was performed to evaluate the antidiabetic activities of plant extracts. Results: Lantana camara showed the highest phenol content (10.20 ± 0.343 mg gallic acid equivalent /g extract) and flavonoid content (1.87 ± 0.160 mg quercetin equivalent /g extract) among the three plant samples, respectively. The methanol extracts of Lantana camara showed the strongest DPPH radical scavenging activity with IC50 of 106.18 ± 11.390 µg/ml. In addition, Ageratina adenophora methanol extract was found to inhibit α-amylase activity with IC50 value of 1.84 ± 0.007 mg/ml. The methanol extract of Ageratina adenophora was found to be toxic against brine shrimp with median lethal concentration (LC50) value of 833.68 µg/ml. Conclusion: This research shows that the traditionally used medicinal plants are the rich and potent sources of natural antioxidant and antidiabetic compounds which may be the potent natural drug candidates in the future drug discovery process.
Full-Text [PDF 760 kb]   (579 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2021/10/27 | Accepted: 2021/11/30 | Published: 2021/12/1

References
1. Kinghorn AD, Pan L, Fletcher JN and Chai H. The relevance of higher plants in lead compound discovery programs. J. Nat. Prod. 2011; 74(6): 1539-55. [DOI:10.1021/np200391c]
2. Newman DJ and Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012; 75(3): 311-35. [DOI:10.1021/np200906s]
3. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014; 4: 177. [DOI:10.3389/fphar.2013.00177]
4. Lotito SB and Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon?. Free. Radic. Biol. Med. 2006; 41(12): 1727-46. [DOI:10.1016/j.freeradbiomed.2006.04.033]
5. Scalbert A, Manach C, Morand C, Remesy C and Jimenez L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food. Sci. Nutr. 2005; 45(4): 287-306. [DOI:10.1080/1040869059096]
6. Zhong RZ and Zhou DW. Oxidative stress and role of natural plant derived antioxidants in animal reproduction. J. Integr. Agric. 2013; 12(10): 1826-38. [DOI:10.1016/S2095-3119(13)60412-8]
7. Li JW and Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science. 2009; 325(5937): 161-5. [DOI:10.1126/science.1168243]
8. Halliwell B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007; 35(5): 1147-50. [DOI:10.1042/BST0351147]
9. Yamagishi SI and Matsui T. Nitric oxide, a janus-faced therapeutic target for diabetic microangiopathy-Friend or foe? Pharmacol. Res. 2011; 64(3): 187-94. [DOI:10.1016/j.phrs.2011.05.009]
10. Kaur K. Exploring the nootropic effect of Juniperus recurva extract: Possible involvement of acetylcholinesterase inhibition. Int. J. Green Pharm. (IJGP). 2019; 13(3).
11. Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging. 2007; 2(2): 219.
12. Giles GI and Jacob C. Reactive sulfur species: an emerging concept in oxidative stress. Biol. Chem. 2002; 383(3-4): 375-388. [DOI:10.1515/BC.2002.042]
13. Sharma OP, Dawra RK, Kurade NP and Sharma PD. A review of the toxicosis and biological properties of the genus Eupatorium. Nat. Toxins. 1998; 6(1): 1-4. https://doi.org/10.1002/(SICI)1522-7189(199802)6:1<1::AID-NT3>3.0.CO;2-E [DOI:10.1002/(SICI)1522-7189(199802)6:13.0.CO;2-E]
14. Malla B and Chhetri RB. Indigenous knowledge on ethnobotanical plants of Kavrepalanchowk district. Kathmandu University Journal of Science, Engineering and Technology. 2009; 5(2): 96-109.
15. Chaudhary HJ, Shahid W, Bano A, Ullah F, Munis F, Fahad S and Ahmad I. In vitro analysis of Cupressus sempervirens L. plant extracts antibaterial activity. J. Med. Plant Res. 2012; 6(2): 273-6. [DOI:10.5897/JMPR11.1246]
16. Rawat P, Khan MF, Kumar M, Tamarkar AK, Srivastava AK, Arya KR and Maurya R. Constituents from fruits of Cupressus sempervirens. Fitoterapia. 2010; 81(3): 162-6. [DOI:10.1016/j.fitote.2009.08.014]
17. Mahmood Z, Ahmed I, Saeed MU and Sheikh MA. Investigation of physico-chemical composition and antimicrobial activity of essential oil extracted from lignin-containing Cupressus sempervirens. Bio. Resources. 2013; 8(2): 1625-33. [DOI:10.15376/biores.8.2.1625-1633]
18. Priyanka N and Joshi PK. A review of Lantana camara studies in India. Int. J. Sci. Res. 2013; 3(10): 1-1.
19. Remya M, Vashum N and Sivasankar S. Bioactivity studies on Lantana camara Linn. Int. J. Pharm. Bio. Sci. 2013; 4(1): 81-90.
20. Liu PY, Liu D, Li WH, Zhao T, Sauriol F, Gu YC, Shi QW and Zhang ML. Chemical constituents of plants from the genus Eupatorium (1904-2014). Chem. Biodivers. 2015; 12(10): 1481-515. [DOI:10.1002/cbdv.201400227]
21. Hassanzadeh Khayyat M, Emami SA, Rahimizadeh M, Fazly-Bazzaz BS and Assili J. Chemical constituents of Cupressus sempervirens L. cv. Cereiformis Rehd. essential oils. Iran. J. Pharm. Sci. 2005; 1(1): 39-42.
22. Selim SA, Adam ME, Hassan SM and Albalawi AR. Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complement. Altern. Med. 2014; 14(1): 1-8. [DOI:10.1186/1472-6882-14-179]
23. Pradhan RR, Hati DK and Samal S. Pharmacognostical, phytochemical and antimicrobial studies on the leaves of Lantana camara Linn. Der. Pharm. Lett. 2012; 4(6): 1648-56.
24. . Lallianrawna S, Muthukumaran R, Ralte V, Gurusubramanian G and Kumar NS. Determination of total phenolic content, total flavonoid content and total antioxidant capacity of Ageratina adenophora (Spreng.) King & H. Rob. Sci. Vis. 2013; 13(4): 149-56.
25. Tiwari P, Kumar B, Kaur MG and Kaur H. Phytochemical screening and extraction: a review. Int. Pharm. Sci. 2011; 1(1); 98-106.
26. Ainsworth EA and Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007; 2(4): 875-7. [DOI:10.1038/nprot.2007.102]
27. Lu X, Ross CF, Powers JR, Aston DE and Rasco BA. Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance-Fourier transformed infrared spectroscopy. J. Agric. Food Chem. 2011; 59(10): 5215-21. [DOI:10.1021/jf201254f]
28. Chang CC, Yang MH, Wen HM and Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002; 10(3). [DOI:10.38212/2224-6614.2748]
29. Demirkiran O, Sabudak T, Ozturk M and Topcu G. Antioxidant and tyrosinase inhibitory activities of flavonoids from Trifolium nigrescens Subsp. petrisavi. J. Agric. Food Chem. 2013; 61(51): 12598-603. [DOI:10.1021/jf403669k]
30. Xiao Z, Storms R and Tsang A. A quantitative starch? Iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 2006; 351(1): 146-8. [DOI:10.1016/j.ab.2006.01.036]
31. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DJ and McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 1982; 45(05): 31-4. [DOI:10.1055/s-2007-971236]
32. Muhammad A and Sirat HM. Antimicrobial, antityrosinase and brine shrimp lethality test of Bauhinia rufescens Lam (Fabaceae). J. Coast. Life Med. 2013; 1(2): 135-40.
33. Swamy MK, Sinniah UR and Akhtar M. In vitro pharmacological activities and GC-MS analysis of different solvent extracts of Lantana camara leaves collected from tropical region of Malaysia. Evid.-Based Complementary Altern. Med. 2015; 2015. [DOI:10.1155/2015/506413]
34. Tripathi Y and Saini NI. Total phenolic, total flavonoid content and antioxidant efficacy of leaves of Eupatorium adenophorum. Int. J. Pharma. Bio. Sci. 2019; 10(2): 157-66. [DOI:10.22376/ijpbs.2019.10.2.p157-166]
35. Tumen I, Senol FS and Orhan IE. Evaluation of possible in vitro neurobiological effects of two varieties of Cupressus sempervirens (Mediterranean cypress) through their antioxidant and enzyme inhibition actions. Turk. J. Biochem. 2012; 37(1). [DOI:10.5505/tjb.2012.92400]
36. Phuyal N, Jha PK, Raturi PP and Rajbhandary S. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. Sci. World J. 2020; 2020. [DOI:10.1155/2020/8780704]
37. Doshi P, Adsule P and Banerjee K. Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kishmish Chornyi (Sharad Seedless) during maturation. Int. J. Food Sci. Tech. 2006; 41: 1-9. [DOI:10.1111/j.1365-2621.2006.01214.x]
38. Parr AJ and Bolwell GP. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000; 80(7): 985-1012. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7 [DOI:10.1002/(SICI)1097-0010(20000515)80:73.0.CO;2-7]
39. Ralte V and Sameul L. In vitro antioxidant activity of Ageratina adenophora (King & Rob) and Ipomoea cairica (L) Sweet. Sci. Vis. 2014; 14(3): 128-32.
40. Ahluwalia V, Sisodia R, Walia S, Sati OP, Kumar J and Kundu A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J. Pest Sci. 2014; 87(2): 341-9. [DOI:10.1007/s10340-013-0542-6]
41. Shahid W, Durrani R, Iram S, Durrani M and Khan FA. Antibacterial activity in vitro of medicinal plants. Sky Journal of Microbiology Res 2013; 1(2): 5-21.
42. Boussoussa H, Khacheba I, Berramdane T, Maamri A, Bendahgane H and Yousfi M. In vitro antidiabetic effect of saponins and phenolic extracts from fruits and seeds of Algerian cypress tree: Cupressus sempervirens L. Curr. Enzyme Inhib. 2018; 14(2): 92-6. [DOI:10.2174/1573408014666180115153812]
43. Asgary S, Naderi GA, Shams Ardekani MR, Sahebkar A, Airin A, Aslani S, Kasher T and Emami SA. Chemical analysis and biological activities of Cupressus sempervirens var. horizontalis essential oils. Pharm. Biol. 2013; 51(2): 137-44. [DOI:10.3109/13880209.2012.715168]
44. Ayub A, Tauseef S and Ali ST. Antioxidant activity of the medicinal plant Lantana camara L. FUUAST Journal of Biology. 2017; 7(2): 227-30.
45. Swamy MK and Sinniah UR. Phytochemical profile and in vitro alpha-amylase inhibitory potential of different solvent extracts of Lantana camara. Bangladesh J. Pharmacol. 2015; 10(4): 962-3. [DOI:10.3329/bjp.v10i4.25371]
46. Kwon YI, Apostolidis E and Shetty K. Evaluation of pepper (Capsicum annuum) for management of diabetes and hypertension. J. Food Biochem. 2007; 31(3): 370-85. [DOI:10.1111/j.1745-4514.2007.00120.x]
47. Ren L, Cao X, Geng P, Bai F and Bai G. Study of the inhibition of two human maltase-glucoamylases catalytic domains by different α-glucosidase inhibitors. Carbohydr. Res. 2011; 346(17): 2688-92. [DOI:10.1016/j.carres.2011.09.012]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb