year 20, Issue 79 (8-2021)                   J. Med. Plants 2021, 20(79): 1-13 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khanavi M, Ghadami S, Sadaghiani-Tabrizi G, Delnavazi M. Phytochemical constituents of the fruits of Kelussia odoratissima Mozaff., an aromatic plant endemic to Iran. J. Med. Plants 2021; 20 (79) :1-13
1- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
2- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
3- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran ,
Abstract:   (1365 Views)
Background: Kelussia odoratissima Mozaff. from Apiaceae family is a perennial herbaceous plant endemic to the west of Iran. The aromatic aerial parts of this species are traditionally used by indigenous people to flavor some local foods, as well as for various therapeutic purposes. Objective: The present study was designed to analyze phenolic compounds and essential oil constituents of K. odoratissima fruits. Methods: The n-butanol fraction obtained from hydroalcoholic extract of K. odoratissima fruits was investigated by chromatography on normal phase and Sephadex LH-20 columns. Chemical structures of the isolated compounds were clarified by ¹H-NMR and ¹³C-NMR spectral analyses. Essential oil constituents of the fruits were also analyzed using GC-MS. Results: Phytochemical investigation of the K. odoratissima fruits resulted in the isolation of five flavonol glycosides; isorhamnetin 3-O-glucoside (1), quercetin 3-O-glucoside (isoquercetin) (2), isorhamnetin 3-O-rutinoside (narcissin) (3), isorhamnetin 3-O-glucuronide (4) and quercetin 3-O-glucuronide (mequilianin) (5). GC-MS analysis of the fruits essential oil led to the identification of the thirty six compounds, of which (Z)-ligustilide (15.93 %), δ-cadinene (12.26 %) and germacrene D (12.18 %) were the main compounds. Conclusion: The results of this study introduce K. odoratissima fruits as a source of flavonoid glycosides and phthalate derivatives. The presence of these compounds with known biological properties and health beneficial effects provides more medicinal potentials for the fruits of K. odoratissima and suggest it an appropriate option for further studies.
Full-Text [PDF 687 kb]   (880 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2021/02/18 | Accepted: 2021/07/3 | Published: 2021/09/1

1. Mozaffarian V. Flora of Iran, No.54: Umbelliferae. Tehran: Publication of Research Institute of Forests and Rangelands; 2007.
2. Amiri MS and Joharchi MR. Ethnobotanical knowledge of Apiaceae family in Iran: a review. Avicenna J. Phytomed. 2016; 6(6): 621-35.
3. Ahmadi K, Omidi H, Amini Dehaghi M and Naghdi Badi H. A review on the botanical, phytochemical and pharmacological characteristics of Kelussia odoratissima Mozaff. J. Med. Plants 2020; 18(72): 30-45. [DOI:10.29252/jmp.4.72.S12.30]
4. Ahmadi F, Kadivar M and Shahedi M. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chem. 2007; 105(1): 57-64. [DOI:10.1016/j.foodchem.2007.03.056]
5. Akbarian A, Rahimmalek M, Sabzalian MR and Sarfaraz D. Variation in essential oil composition, phenolic, flavonoid and antioxidant activity of Kelussia odoratissima Mozaff based on three model systems. J. Appl. Res. Med. Aromat. Plants 2019; 13: 100208. [DOI:10.1016/j.jarmap.2019.100208]
6. Sureshjani MH, Yazdi FT, Mortazavi SA, Behbahani BA and Shahidi F. Antimicrobial effects of Kelussia odoratissima extracts against food borne and food spoilage bacteria "in vitro". Arch. Adv. Biosci. 2014; 5(2): 115-20.
7. Vatandoost H, Sanei Dehkordi A, Sadeghi SMT, Davari B, Karimian F, Abai MR and Sedaghat MM. Identification of chemical constituents and larvicidal activity of Kelussia odoratissima Mozaffarian essential oil against two mosquito vectors Anopheles stephensi and Culex pipiens (Diptera: Culicidae). Exp. Parasitol. 2012; 132(4): 470-574. [DOI:10.1016/j.exppara.2012.09.010]
8. Kheirabadi KP, Dehkordi SS and Kheibari P. Effect of Kelussia odoratissima Mozaff. essential oil on promastigot form of Leishmania major (in vitro). J. HerbMed Pharmacol. 2015; 4(1): 10-14.
9. Karimian H, Arya A, Fadaeinasab M, Razavi M, Hajrezaei M, Khan AK, Ali HM, Abdulla MA and Noordin MI. Kelussia odoratissima Mozaff. activates intrinsic pathway of apoptosis in breast cancer cells associated with S phase cell cycle arrest via involvement of p21/p27 in vitro and in vivo. Drug Des. Devel. Ther. 2017; 11: 337-50. [DOI:10.2147/DDDT.S121518]
10. Sedighi M, Rafieian-Kopaei M, Noori-Ahmadabadi M. Kelussia odoratissima Mozaffarian inhibits ileum contractions through voltage dependent and beta adrenergic receptors. Life Sci. J. 2012; 9(4): 1033-8.
11. Minaiyan M, Sajjadi SE, Naderi N and Taheri D. Anti-inflammatory effect of Kelussia odoratissima Mozaff. hydroalcoholic extract on acetic acid-induced acute colitis in rats. J. Rep. Pharm. Sci. 2014; 3(1): 28-35.
12. Safaeian L, Sajjadi SE, Javanmard SH and Gholamzadeh H. Antihypertensive and antioxidant effects of hydroalcoholic extract from the aerial parts of Kelussia odoratissima Mozaff. in dexamethasone-induced hypertensive rats. Adv. Biomed. Res. 2016; 5: 25. [DOI:10.4103/2277-9175.176342]
13. Rabbani M, Sajjadi SE and Sadeghi M. Chemical composition of the essential oil from Kelussia odoratissima Mozaff. and the evaluation of its sedative and anxiolytic effects in mice. Clinics. 2011; 66(5): 843-8. [DOI:10.1590/S1807-59322011000500022]
14. Sajjadi S, Shokoohinia Y and Mehramiri P. Isolation and characterization of steroids, phthalide and essential oil of the fruits of Kelussia odoratissima Mozaff., an endemic mountain celery. Res. Pharm. Sci. 2013; 8(1): 35-41.
15. Saeedi KA and Omidbaigi R. Chemical characteristics of the seed of Iranian endemic plant Kelussia odoratissima. Chem. Nat. Compd. 2010; 46(5): 813-5. [DOI:10.1007/s10600-010-9754-7]
16. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream: Allured Publishing Corporation; 2007.
17. Aliotta G, Della Greca M, Monaco P, Pinto G, Pollio A and Previtera L. In vitro algal growth inhibition by phytotoxins of Typha latifolia L. J. Chem. Ecol. 1990; 16(9): 2637-46. [DOI:10.1007/BF00988075]
18. Eldahshan OA. Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. Curr. Res. J. Biol. Sci. 2011; 3(1): 52-5.
19. Güvenalp Z, Özbek H, Ünsalar T, Kazaz C, Demirezer LÖ. Iridoid, flavonoid, and phenylethanoid glycosides from Wiedemannia orientalis. Turk. J. Chem. 2006; 30(3): 391-400.
20. Im SH, Wang Z, Lim SS, Lee OH and Kang IJ. Bioactivity-guided isolation and identification of anti-adipogenic compounds from Sanguisorba officinalis. Pharm. Biol. 2017; 55(1): 2057-64. [DOI:10.1080/13880209.2017.1357736]
21. Nugroho A, Song BM, Lee KT, Park HJ. Quantification of antidepressant miquelianin in mature and immature fruits of Korean Rubus species. Nat. Prod. Sci. 2014; 20(4): 258-61.
22. Shahidi F and Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects- a review. J. Funct. Food. 2015; 18: 820-97. [DOI:10.1016/j.jff.2015.06.018]
23. Hyun SK, Jung YJ, Chung HY, Jung HA, Choi JS. Isorhamnetin glycosides with free radical and ONOO- scavenging activities from the stamens of Nelumbo nucifera. Arch. Pharm. Res. 2006; 29(4): 287-92. [DOI:10.1007/BF02968572]
24. El-Aasr M, Kabbash A, El-Seoud KAA, Al-Madboly LA and Ikeda T. Antimicrobial and Immunomodulatory activities of flavonol glycosides isolated from Atriplex halimus L. herb. J. Pharm. Sci. Res. 2016; 8(10): 1159-68.
25. Zheng Y-Z, Deng G, Liang Q, Chen D-F, Guo R and Lai R-C. Antioxidant activity of quercetin and its glucosides from propolis: A theoretical study. Sci. Rep. 2017; 7(1): 1-11. [DOI:10.1038/s41598-017-08024-8]
26. Panda S and Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors 2007; 31(3-4): 201-10. [DOI:10.1002/biof.5520310307]
27. Lee S, Lee J, Lee H and Sung J. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. J. Food Biochem. 2019; 43(11): e13002. [DOI:10.1111/jfbc.13002]
28. Süntar IP, Akkol EK, Yalçın FN, Koca U, Keleş H and Yesilada E. Wound healing potential of Sambucus ebulus L. leaves and isolation of an active component, quercetin 3-O-glucoside. J. Ethnopharmacol. 2010; 129(1): 106-14. [DOI:10.1016/j.jep.2010.01.051]
29. Im SH, Wang Z, Lim SS, Lee OH and Kang IJ. Bioactivity-guided isolation and identification of anti-adipogenic compounds from Sanguisorba officinalis. Pharm. Biol. 2017; 55(1): 2057-64. [DOI:10.1080/13880209.2017.1357736]
30. Landa A, Casado R and Calvo MI. Identification and quantification of flavonoids from Chuquiraga spinosa (Asteraceae). Nat. Prod. Commun. 2009; 4(10): 1353-1355. [DOI:10.1177/1934578X0900401008]
31. Petropoulos SA, Fernandes Â, Vasileios A, Ntatsi G, Barros L and Ferreira IC. Chemical composition and antioxidant activity of Cichorium spinosum L. leaves in relation to developmental stage. Food Chem. 2018; 239: 946-52. [DOI:10.1016/j.foodchem.2017.07.043]
32. Parejo I, Jauregui O, Sánchez-Rabaneda F, Viladomat F, Bastida J and Codina C. Separation and characterization of phenolic compounds in fennel (Foeniculum vulgare) using liquid chromatography- negative electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2004; 52(12): 3679-87. [DOI:10.1021/jf030813h]
33. Castillo-Muñoz N, Gómez-Alonso S, García-Romero E and Hermosín-Gutiérrez I. Flavonol profiles of Vitis vinifera white grape cultivars. J. Food Compost. Anal. 2010; 23(7): 699-705. [DOI:10.1016/j.jfca.2010.03.017]
34. Del‐Castillo‐Alonso MÁ, Monforte L, Tomás‐Las‐Heras R, Martínez‐Abaigar J and Núñez‐Olivera E. Phenolic characteristics acquired by berry skins of Vitis vinifera cv. Tempranillo in response to close‐to‐ambient solar ultraviolet radiation are mostly reflected in the resulting wines. J. Sci. Food Agric. 2020; 100(1): 401-9. [DOI:10.1002/jsfa.10068]
35. Badria FA, Ameen M and Akl MR. Evaluation of cytotoxic compounds from Calligonum comosum L. growing in Egypt. Z. Naturforsch. C. 2007; 62(9-10): 656-60. [DOI:10.1515/znc-2007-9-1005]
36. Dall'Acqua S, Cervellati R, Loi MC and Innocenti G. Evaluation of in vitro antioxidant properties of some traditional Sardinian medicinal plants: Investigation of the high antioxidant capacity of Rubus ulmifolius. Food Chem. 2008; 106(2): 745-9. [DOI:10.1016/j.foodchem.2007.06.055]
37. Plumb GW, Price KR and Williamson G. Antioxidant properties of flavonol glycosides from green beans. Redox Rep. 1999; 4(3): 123-7. [DOI:10.1179/135100099101534800]
38. Moon J-H, Tsushida T, Nakahara K and Terao J. Identification of quercetin 3-O-β-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radical Bio. Med. 2001; 30(11): 1274-85. [DOI:10.1016/S0891-5849(01)00522-6]
39. Ho L, Ferruzzi MG, Janle EM, Wang J, Gong B, Chen TY, Lobo J, Cooper B, Wu QL, Talcott ST, Percival SS, Simon JE and Pasinetti GM. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer's disease. FASEB J. 2013; 27(2): 769-81. [DOI:10.1096/fj.12-212118]
40. Yoon CS, Kim DC, Ko WM, Kim KS, Lee DS, Kim DS, Cho HK, Seo J, Kim SY, Oh H and Kim YC. Anti-neuroinflammatory effects of quercetin-3-O-glucuronide isolated from the leaf of Vitis labruscana on LPS-induced neuroinflammation in BV2 cells. Korean J. Pharmacog. 2014; 45(1): 17-22.
41. Ohara K, Wakabayashi H, Taniguchi Y, Shindo K, Yajima H and Yoshida A. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages. Biochem. Bioph. Res. Co. 2013; 441(4): 929-34. [DOI:10.1016/j.bbrc.2013.10.168]
42. Mahmoudi R, Kosari M, Zare P and Barati S. Kelussia odoratissima essential oil: biochemical analysis and antibacterial properties against pathogenic and probiotic bacteria. J. Agroaliment. Processes Technol. 2014; 20(1): 109-15.
43. Raeisi S, Mirjalili MH, Nadjafi F and Hadian J. Variability in the essential oil content and composition in different plant organs of Kelussia odoratissima Mozaff. (Apiaceae) growing wild in Iran. J. Essent. Oil Res. 2015; 27(4): 283-8. [DOI:10.1080/10412905.2015.1025917]
44. Esmaeili A, Sharafian S, Mirian S and Larijani K. Chemical composition of essential oil from leaves, stems and flowers of Kelussia odoratissima Mozaff. grown in Iran. J. Essent. Oil-Bear. Plants. 2011; 14(5): 643-6. [DOI:10.1080/0972060X.2011.10643984]
45. Omidbaigi R, Sefidkon F and Saeedi K. Essential oil content and composition of Kelussia odoratissima Mozaff. as an Iranian endemic plant. J. Essent. Oil-Bear. Plants. 2008; 11(6): 594-7. [DOI:10.1080/0972060X.2008.10643672]
46. Shojaei ZA, Ebrahimi A and Salimi M. Chemical composition of three ecotypes of wild celery (Kelussia odoratissima). J. Herbs Spices Med. Plants. 2011; 17(1): 62-8. [DOI:10.1080/10496475.2011.560089]
47. Pirbalouti AG, Sedaghat L, Hamedi B and Tirgir F. Chemical composition and antioxidant activity of essential oils of three endemic medicinal plants of Iran. Bangladesh J. Bot. 2013; 42(2): 327-32. [DOI:10.3329/bjb.v42i2.18038]
48. Baser KHC and Buchbauer G. Handbook of essential oils: science, technology, and applications: CRC press; 2015. [DOI:10.1201/b19393]
49. Xie Q, Zhang L, Xie L, Zheng Y, Liu K, Tang H, Liao Y and Li X. Z-Ligustilide: a review of its pharmacokinetics and pharmacology. Phytotherapy Res. 2020; 34(8): 1966-1991. [DOI:10.1002/ptr.6662]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb