year 19, Issue 75 (9-2020)                   J. Med. Plants 2020, 19(75): 168-187 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Paryan S, Ghorbanpour M, Hadian J. Influence of CeO2-Nanoparticles on morpho-physiological tritas and tanshinone contents of roots in Salvia miltiorrihiza Bunge upon foliar and soil application methods. J. Med. Plants 2020; 19 (75) :168-187
URL: http://jmp.ir/article-1-2692-en.html
1- Graduate Student (MSc.) Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
2- Graduate Student (MSc.) Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran , m-ghorbanpour@araku.ac.ir
3- Associate Professor Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
Abstract:   (3340 Views)
Background: Cerium oxide nanoparticles (CeO2NPs) may differentially affect physiological and metabolic processes of plants depends on plant species, culture conditions, concentrations and application methods. Objective: Evalaution of the effects of different concentrations of CeO2NPs through two different methods at two growth stages on morpho-physiological and phytochemicqal characteristics of red sage (Salvia miltiorrhiza Bunge). Methods: In this study CeO2NPs (0, 250, 500, 1000 mg/l) was applied at two growth stages (vegetative and reproductive) via foliar and soil application in a factorial experiment based on completely randomized design with three replications. Results: Maximum dry weight of aerial parts was obsrved in 250 mg/l CeO2NPs foliar application treatment at reproductive stage. Chlorophyll a content was peaked at 250 mg/l CeO2NPs soil applied treatment at reproductive stage. Furthermore, the highest content of total phenol, flavonoid, and antioxidant acitivity were obtained in leaf extract of plants foliar treated with 500 mg/l CeO2NPs at reproductive stage. The highest root rosmarinic acid and tanshinon content was achived at soil applied CeO2NPs of 500 mg/l at reproductive stage, which increased 58.7 and 24.6% compared to the respective control, respectively. Conclusion: According to the obtained results in this study, CeO2NPs at 250 and 500 mg/l through foliar application at reproductive stage showed strong effect on improvement of morpho-physiological and phytochemical characteristics in S. miltiorrhiza.
Full-Text [PDF 935 kb]   (2125 Downloads)    
Type of Study: Research | Subject: Agriculture & Ethnobotany
Received: 2019/10/17 | Accepted: 2020/01/5 | Published: 2020/09/6

References
1. Guo BL, Feng YX and Zhao YJ. Review of germplasm resources studies on Salvia miltiorrhiza. Zhongguo Zhong Yao Za Zhi.‌ 2002; 27: 492-5.
2. Shu T, Pang M, Rong L, Zhou W, Wang J, Liu C and Wang X. Effects of Salvia miltiorrhiza on neural differentiation of induced pluripotent stem cells. J. Ethnopharmacol. 2014; 153: 233-41. [DOI:10.1016/j.jep.2014.02.028]
3. Zhang LJ, Chen L, Lu Y, Wu JM, Xu B, Sun ZG, Zheng SZ and Wang AY. Danshensu has anti-tumor activity in B16F10 melanoma by inhibiting angiogenesis and tumor cell invasion. Eur. J. Pharmacol. 2010; 643: 195-201. [DOI:10.1016/j.ejphar.2010.06.045]
4. Kang DG, Oh H, Chung HT and Lee HS. Inhibition of angiotensin converting enzyme by lithospermic acid B isolated from Radix Salviae miltiorrhiza Bunge. Phytother. Res. 2003; 17: 917-20. [DOI:10.1002/ptr.1250]
5. Petersen M and Simmonds MSJ. Molecules of interest rosmarinic acid. Phytochem. 2003; 62: 121-5. [DOI:10.1016/S0031-9422(02)00513-7]
6. Tóth J, Mrlianová M, Tekel'ová D and Koreňová M. Rosmarinic acid- an important phenolic active compound of Lemon balm (Mellissa officinalis L.). Acta Facult. Pharm. Univ. Comenianae 2003; 50: 139-46.
7. Chen J, Wang F, Lee FS, Wang X and Xie M. Separation and identification of water-soluble salvianolic acids from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography and ESI-MS analysis. Talanta 2006; 69: 172-9. [DOI:10.1016/j.talanta.2005.09.041]
8. Nwugo CC and Huerta AJ. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J. Proteome Res. 2011; 10: 518-28. [DOI:10.1021/pr100716h]
9. Remya Nair, Saino Hanna Varghese Baiju G, Nair T, Maekawa YY, oshida D and Sakthi Kumar (2010). Nanoparticulate material delivery to plants. Plant Science 179: 154-63. [DOI:10.1016/j.plantsci.2010.04.012]
10. Ma X, Wang Q, Rossi L and Zhang W. Cerium oxide nanoparticles and bulk cerium oxide leading to different physiological and biochemical responses in Brassica rapa. Environmental Science and Technol. 2015; 50: 6793-802. [DOI:10.1021/acs.est.5b04111]
11. Naumov A. Review of the world market of rare-earth metals. Russ. J. Non-Ferr. Metals 2008; 49: 2-14.
12. Masui T, Hirai H, ImanakaN, Adachi G, Sakata T and Mori H. Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. J. Mater. Sci. Lett. 2002; 21: 489-91. [DOI:10.1023/A:1015342925372]
13. Otsuka K, Wang Y, Sunada E and Yamanaka I. Direct Partial Oxidation of Methane to ynthesis Gas by Cerium Oxide. J. Catalysis 1998; 175: 152-60. [DOI:10.1006/jcat.1998.1985]
14. Ghorbanpour M. Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian Journal Plant Physiol. 2015; 20: 249-56. [DOI:10.1007/s40502-015-0170-7]
15. Ghorbanpour M, Hatami M and Hatami M. Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nano-sized titanium dioxide and bulk application. Acta Agric. Slov. 2015; 105: 23-32. [DOI:10.14720/aas.2015.105.1.03]
16. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M and Gardea-Torresdey JL. Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study. J. Agricultural and Food Chem. 2013; 61: 11945-51. [DOI:10.1021/jf404328e]
17. Aghajani Z, Pourmeidani A and Ekhtiyari R. Effect of nano-silver on stages of plant Growth and yield and composition of essential of Thymus kotchyanus Boiss. Hohen African Journal of Agricultural Res. 2013; 8: 707-10.
18. Ghorbanpour M and Hadian J. Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon. 2015; 94: 749-59. [DOI:10.1016/j.carbon.2015.07.056]
19. Harrison CC. Evidence for intramineral macromolecules containing protein from plant silicas, Phytochem. 1996; 41: 37-42. [DOI:10.1016/0031-9422(95)00576-5]
20. Hatami M, Naghdi Badi H and Ghorbanpour M. Nano-Elicitation of Secondary Pharmaceutical Metabolites in Plant Cells: A Review. J. Med. Plants 2019; 71(3): 6-36. [DOI:10.29252/jmp.3.71.6]
21. Böhm W. Root Parameters and Their Measurement. In: Methods of Studying Root Systems. Ecological Studies (Analysis and Synthesis), 1979; Vol 33. Springer, Berlin, Heidelberg. [DOI:10.1007/978-3-642-67282-8_12]
22. Arnon DI. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949; 24: l-15. [DOI:10.1104/pp.24.1.1]
23. Anokwuru CP, Anyasor GN, Ajibaye O, Fakoya O and Okebugwu P. Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three nigerian medicinal plants. Nat. Sci. 2011; 9: 53-61.
24. Singleton VL and Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Enology and Viticulture J. 1965; 16(3): 144-58.
25. Rivas MA, Vignale D, Ordóñez RM, Zampini IC, Alberto MR, Sayago JE and Isla MI. Antioxidant and Anti-Inflammatory Properties of Cyclanthera pedata, an Andinean Fruit and Products Derived from Them. Materials J. 2013; 5: 1-14. [DOI:10.4236/fns.2013.48A007]
26. Akowuah GA, Ismail Z, Norhayati I and Sadikun A. The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chem. J. 2005; 93(2): 311-7. [DOI:10.1016/j.foodchem.2004.09.028]
27. Reich E and Schibli A. High-Performance Thin-Layer Chromatography for the Analysis of Medicinal Plants. Thieme Medical Pub, New York, 2006, p: 197.
28. Rey JP, Levesque J, Pousset JL and Roblot F. Analytical and quantitative studies of californin and protopin in aerial part extracts of Eschscholtzia californica Cham. With high-performance liquid chromatography. Chromatography J. 1991; 87(2): 314-7. [DOI:10.1016/0021-9673(91)85174-E]
29. Wang Q, Ma X, Zhang W, Pei H and Chen Y. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 2012; 4: 1105-12. [DOI:10.1039/c2mt20149f]
30. Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L,‌ CorralDiaz B, Ge Y, Priester JH,‌ AnnHolden P and Gardea-Torresdey JL. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiology and Biochemistry. 2014; 80: 128-35. [DOI:10.1016/j.plaphy.2014.03.028]
31. Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR and Gardea-Torresdey JL. Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J. Agricultural and Food Chem. 2013; 61: 6224-30. [DOI:10.1021/jf401628v]
32. Pagano L, Servin AD, De La Torre-Roche R, Mukherjee A, Majumdar S, Hawthorne J, Marmiroli M, Maestri E, Marra RE, Isch SM, Dhankher‌ OP, White JC and Marmiroli N. Molecular response of crop plants to engineered nanomaterials. Environ. Sci. Technol. 2016; 50: 7198-207. [DOI:10.1021/acs.est.6b01816]
33. Rico CM, Peralta-Videa JR and Gardea-Torresdey JL. Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: A Fourier Transform Infrared (FT-IR) microspectroscopy study. Appl. Spectrosc. 2015; 69: 287-95. [DOI:10.1366/14-07495]
34. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR and Gardea-Torresdey JL. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ. Sci. Technol. 2010; 44: 7315-20. [DOI:10.1021/es903891g]
35. López-Moreno ML, de La Rosar G, Hernández-Viezcas JA, Peralta-Videa JR and Gardea-Torresdey JL. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 2010; 58: 3689-93. [DOI:10.1021/jf904472e]
36. Diatloff E, Smith FW and Asher CJ. Rare-earth elements and plant growth. III. Responses of corn and mung bean to low concentrations of cerium in dilute, continuously flowing nutrient solutions. J. Plant Nutr. 1995; 18: 1991-2003. [DOI:10.1080/01904169509365039]
37. Fashui H, Ling W, Xiangxuan M, Zheng W and Guiwen Z. The effect of cerium (III) on the chlorophyll formation in spinach. Biol. Trace Elem. Res. 2002; 89: 263-76. [DOI:10.1385/BTER:89:3:263]
38. Fashui H, Chao L, Lei Z, Xuefeng W, Kang W, Weiping S, Shipeng L, Ye T and Guiwen Z. Formation of complexes of Rubisco - Rubisco activase from La3+, Ce3+ treatment spinach. Science in China Series B: Chemistry 2005; 48: 67-74. [DOI:10.1007/BF02990915]
39. Xiaoqing L, Mingyu S, Chao L, Lu Z, Wenhui S and Fashui H. Effects of CeCl3 on energy transfer and oxygen evolution in spinach photosystem II. J. Rare Earths 2007; 25, 624-30. [DOI:10.1016/S1002-0721(07)60575-4]
40. Chen J, Patil S, Seal S, McGinnis JF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 2006; 1: 142-50. [DOI:10.1038/nnano.2006.91]
41. Shyam R, and Aery NC. Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants [Vigna unguiculata (L.) Walp]. J. Plant Nutr. Soil Sci. 2012; 12: 1-14. [DOI:10.4067/S0718-95162012000100001]
42. Hatami M, Hosseini SM, Ghorbanpour M, Kariman K. Physiological and antioxidative responses to GO/PANI nanocomposite in intact and demucilaged seeds and young seedlings of Salvia mirzayanii. Chemosphere 2019; 233: 920-35. [DOI:10.1016/j.chemosphere.2019.05.268]
43. Mohammadi M, Hatami M, Feghezadeh K and Ghorbanpour M. Mitigating effect of nano zerovalent iron, iron sulfate and EDTA against oxidative stress induced by chromium in Helianthus annuus L. Acta Physiologiae Plantarum. 2018; 40: 69. [DOI:10.1007/s11738-018-2647-2]
44. Wang X X, Shi G X, Xu Q S, Xu B J and Zhao J. Lanthanum- and Cerium-Induced Oxidative Stress in Submerged Hydrilla verticillata Plants. Russian Journal of Plant Physiol. 2007; 54: 693-7. [DOI:10.1134/S1021443707050184]
45. Wang X, Morris-Natschke SL and Lee KH. New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med. Res. Rev. 2007; 27: 133-48. [DOI:10.1002/med.20077]
46. Zhao JL, Zhou LG and Wu JY. Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl. Microbiol. Biotechnol. 2010; 87: 137-44. [DOI:10.1007/s00253-010-2443-4]
47. Li J, Liang X, Dong J, Wang G and Liang Z. Localization and Identification of Phenolic Compounds in Salvia miltiorrhiza Bunge Roots and Leaves. J. Science and Application. 2015; 3: 34-40.
48. Zhang Z, He X, Zhang H, Ma Y and Zhang P. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 2011; 3: 816-22. [DOI:10.1039/c1mt00049g]
49. Pinchuk AP, Likhanov AF, Babenko LP, Kryvtsova MV, Demchenko AO, Sherbakov OB, Lazarenko LM and Spivak M. The influence of cerium dioxide nanoparticles on seed germination and accumulation of plastid pigments and phenolic compounds of scots pine seedlings (Pinus sylvestris L.). Biotechnologia Acta. 2017; 10: 63-71. [DOI:10.15407/biotech10.05.063]
50. Wang JW and Wu JY. Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl. Microbiol. Biotechnol. 2010; 88: 437-49. [DOI:10.1007/s00253-010-2797-7]
51. Yan Q, Shi M, Ng J and Wu JY. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci. 2006; 170: 853-8. [DOI:10.1016/j.plantsci.2005.12.004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb