year 18, Issue 71 (9-2019)                   J. Med. Plants 2019, 18(71): 6-36 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hatami M, Naghdi Badi H, Ghorbanpour M. Nano-Elicitation of Secondary Pharmaceutical Metabolites in Plant Cells: A Review. J. Med. Plants 2019; 18 (71) :6-36
1- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349, Arak, Iran ,
2- Medicinal Plants Research Centre, Institute of Medicinal Plants, ACECR, Karaj, Iran
3- Institute of Nanoscience and Nanotechnology, Arak University, Arak, Iran
Abstract:   (7000 Views)
In recent years, metabolism researches using nanomaterials have been focusing on human and animal cells, and therefore very limited data are available about influence of nanomaterials on biosynthesis of secondary metabolites in plant cells. Plants produce different types of secondary metabolites including terpenoids, phenolics, tannins, and alkaloids, which are known to act as vital mediators for the interaction with other living (biotic) or non-living (abiotic) agents under stressful conditions. Elicitors may induce physiological and biochemical processes of the target plants and activate defense mechanisms. Application of signaling molecules as elicitors has evolved an efficient technique for the production of pharmaceutically active compounds in plants. However, relatively little has been done regarding the application of nanomaterials as potential elicitors for production of industrially valuable compounds. Here, we provide studies proving that nanomaterials can function as elicitors of plant defensive chemistry that are mostly accompanied by enhanced production of different secondary metabolites.
Full-Text [PDF 2752 kb]   (2849 Downloads)    
Type of Study: Research | Subject: Agriculture & Ethnobotany
Received: 2018/06/3 | Accepted: 2018/08/11 | Published: 2019/08/24

1. Buzea C, Pacheco I and Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007; 2: Mr17-Mr71. [DOI:10.1116/1.2815690]
2. Buzea C and Pacheco I. Nanomaterial and Nanoparticle: Origin and Activity, In: Nanoscience and Plant-Soil Systems, M. Ghorbanpour et al. (eds.), Soil Biology, 2017, 48, DOI 10.1007/978-3-319-46835-8_3. [DOI:10.1007/978-3-319-46835-8_3]
3. Scrinis G, Lyons K. The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int. J. Soc. Agric. Food 2007; 15: 22-44.
4. Dallavalle M, Calvaresi M, Bottoni A, Melle-Franco M and Francesco-Zerbetto F. Graphene Can Wreak Havoc with Cell Membranes. ACS Appl. Mater. Interfaces 2015; 7 (7): 4406-4414. [DOI:10.1021/am508938u]
5. Hu X, Zhou M and Zhou Q. Ambient Water and Visible-Light Irradiation Drive Changes in Graphene Morphology, Structure, Surface Chemistry, Aggregation, and Toxicity. Environ. Sci. Technol. 2015; 49 (6): 3410-3418. [DOI:10.1021/es503003y]
6. Ghorbanpour M and Hadian J. Engineered Nanomaterials and Their Interactions with Plant Cells: Injury Indices and Detoxification Pathways. M. Ghorbanpour et al. (eds.), Nanoscience and Plant-Soil Systems, Soil Biology 2017; 48: DOI 10.1007/978-3-319-46835-8_13. [DOI:10.1007/978-3-319-46835-8_16]
7. Hatami, M, Kariman K and Ghorbanpour M. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Science of the Total Environment 2016; 571: 275-291. [DOI:10.1016/j.scitotenv.2016.07.184]
8. Sun T, Zhang YS, Pang B, Hyun DC, Yang M and Xia Y. Engineered nanoparticles for drugdelivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 2014; 53 (46): 12320-64. [DOI:10.1002/anie.201403036]
9. Hartmann T. From waste products to ecochemicals: fifty years research of plant secondarymetabolism. Phytochemistry 2007; 68: 2831-2846. [DOI:10.1016/j.phytochem.2007.09.017]
10. Ncube B and Van Staden J. Tilting Plant Metabolism for Improved Metabolite Biosynthesis and Enhanced Human Benefit. Molecules 2015; 20 (7): 12698-12731. [DOI:10.3390/molecules200712698]
11. Zhao DX, Fu CX, Han YS and Lu DP. Effects of elicitation on jaceosidin and hispidulinproduction in cell suspension cultures of Saussurea medusa. Process Biochem. 2005a; 40 (2): 739-745. [DOI:10.1016/j.procbio.2004.01.040]
12. Zhao J, Davis LC and Verpoorte R. Elicitor signal transduction leading to production ofsecondary metabolites. Biotechnol. Adv. 2005b; 23: 283-333. [DOI:10.1016/j.biotechadv.2005.01.003]
13. Rao SR and Ravishankar GA. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv. 2002; 20: 101-153. [DOI:10.1016/S0734-9750(02)00007-1]
14. Mulabagal V and Tsay HS. Plant cell cultures-an alternative and efficient source for theproduction of biologically important secondary metabolites. Int. J. Appl. Sci. Eng. 2004; 2: 29-48.
15. Fakruddin MD, Hossain Z and Afroz H. Prospects and applications of nanobiotechnology: amedical perspective. J. Nanobiotechnol. 2012; 10: 1-8. [DOI:10.1186/1477-3155-10-40]
16. Aditya N, Patnakar S, Madhusudan B, Murthy R and Souto E. Artemether loaded lipidnanoparticles produced by modified thin film hydration: pharmacokinetics, toxicological andinvivo antimalarial activity. Eur. J. Pharm. Sci. 2010; 40: 448-455. [DOI:10.1016/j.ejps.2010.05.007]
17. Asghari GH, Mostajeran A, Sadeghi H and Nakhaei A. Effect of salicylic acid and silver nitrateon taxol production in Taxus baccata. J. Med. Plants 2012; 11 (8): 74-82.
18. Sharafi E, Nekoei SMK, Fotokian MH, Davoodi D, Mirzaei HH and Hasanloo T. Improvementof hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cellsuspension culture of St John's wort (Hypericum perforatum L.). J. Med. Plants By-prod 2013; 2: 177-184.
19. Zhang B, Zheng L.P, Yi Li W and Wen Wang J. Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. Curr. Nanosci. 2013; 9: 363-370. [DOI:10.2174/1573413711309030012]
20. Ghanati F and Bakhtiarian S. Effect of methyl jasmonate and silver nanoparticles on production of secondary metabolites by Calendula officinalis L. (Asteraceae). Trop. J. Pharmaceut. Res. 2014; 13 (11): 1783-1789. [DOI:10.4314/tjpr.v13i11.2]
21. Hatami M and Ghorbanpour M. Defense enzymes activity and biochemical variations of Pelargonium zonale in response to nanosilver particles and dark storage. Turk. J. Biol. 2014; 38: 130-139. [DOI:10.3906/biy-1304-64]
22. Raei M, Angaji SA, Omidi M and Khodayari M. Effect of abiotic elicitors on tissue culture of Aloe vera. Int. J. Biosci. 2014; 5 (1): 74-81. [DOI:10.12692/ijb/5.1.74-81]
23. Ghasemi B, Hosseini R and Nayeri FD. Effects of cobalt nanoparticles on artemisininproduction and gene expression in Artemisia annua. Turk. J. Bot. 2015; 39: 769 - 777. [DOI:10.3906/bot-1410-9]
24. Ghorbanpour M. Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Ind. J. Plant Physiol. 2015; 20 (3): 249-256. [DOI:10.1007/s40502-015-0170-7]
25. Yarizade K, Hosseini R. Expression analysis of ADS, DBR2, ALDH1 and SQS genes in Artemisia vulgaris hairy root culture under nano cobalt and nano zinc elicitation. Ext. J. App. Sci. 2015; 3 (3): 69-76.
26. Baiazidi-Aghdam MT, Mohammadi H and Ghorbanpour M. Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. Braz. J. Bot. 2016; 39: 139-146. [DOI:10.1007/s40415-015-0227-x]
27. Yadav T, Mungray A.A and Mungray A.K. Fabricated Nanoparticles: Current Status and Potential Phytotoxic Threats. In: WHITACRE, D. M. (ed.) Reviews of Environmental Contamination and Toxicology. Springer Verlag, Switzerland. 2014; 230: 83-110. [DOI:10.1007/978-3-319-04411-8_4]
28. Ma C.X, White J.C, Dhankher O.P and Xing B. Metal-based Nanotoxicity and Detoxification Pathways in Higher Pplants. Environ. Sci. Technol. 2015; 49 (12): 7109-7122. [DOI:10.1021/acs.est.5b00685]
29. Deng Y.Q, White J.C and Xing, B.S. Interactions Between Engineered Nanomaterials and Agricultural Crops: Implications for Food Safety. Journal of Zhejiang University-Science A 2014; 15: 552-572. [DOI:10.1631/jzus.A1400165]
30. Fleischer A, O'Neill M.A and Ehwald R. The Pore size of Non-graminaceous Plant Cell Walls is Rapidly Decreased by Borate Ester Cross-linking of the Pectic Polysaccharide Rhamnogalacturonan II. Plant Physiol. 1999; 121: 829 - 838. [DOI:10.1104/pp.121.3.829]
31. Lin S, Reppert J, Hu Q, Hudson J.S, Reid M.L, Ratnikova T.A, Rao A.M, Luo H and Ke P.C. Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants. Small 2009; 5: 1128-1132. [DOI:10.1002/smll.200801556]
32. Rico C.M., Majumdar S., Duarte-Gardea M., Peralta-Videa, J.R. and Gardea-Torresdey J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011; 59: 3485 - 3498. [DOI:10.1021/jf104517j]
33. Wild E and Jones K.C. Novel Method for the Direct Visualization of in vivoNanomaterials and Chemical Interactions in Plants. Environ. Sci. Technol. 2009; 43; 5290-5294. [DOI:10.1021/es900065h]
34. Nel A.E, Madler L, Velegol D, Xia T, Hoek E.M.V., Somasundaran P, Klaessig F, Castranova V and Thompson M. Understanding Biophysicochemical Interactions at the Nano-bio Interface. Nat. Mater. 2009; 8 (7): 543-557. [DOI:10.1038/nmat2442]
35. Saptarshi Shruti R, Albert Duschl and Andreas L Lopata. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J. Nanobiotechnol. 2013; 11: 26. [DOI:10.1186/1477-3155-11-26]
36. Wang S.H, Kurepa J and Smalee J.A. Ultra-small TiO2 Nanoparticles Disrupt Microtubular Networks in Arabidopsis thaliana. Plant Cell and Environment 2011; 34: 811-820. [DOI:10.1111/j.1365-3040.2011.02284.x]
37. Larue C, Castillo-Michel H, Sobanska S, Cecillon L, Bureau S, Barthes V, Ouerdane L, Carriere M and Sarret G. Foliar Exposure of the Crop Lactuca sativa to Silver Nanoparticles: Evidence for Internalization and Changes in Ag speciation. J. Hazard. Mater. 2014a; 264: 98-106. [DOI:10.1016/j.jhazmat.2013.10.053]
38. Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cecillon L, Ouerdanef L, Legrosg S and Sarreta G. Fate of Pristine TiO2 Nanoparticlesand Aged Paint-Containing TiO2 Nanoparticles in Lettuce Crop after FoliarExposure. J. Hazard. Mater. 2014b; 273: 17-26. [DOI:10.1016/j.jhazmat.2014.03.014]
39. Hong J, Peralta-Videa J.R, Rico C, Sahi S, Viveros M.N, Bartonjo J, Zhao L.J and Gardea-Torresdey J.L. Evidence of Translocation and Physiological Impactsof Foliar Applied CeO2 Nanoparticles on Cucumber (Cucumis sativus) Plants. Environ. Sci. Technol. 2014; 48: 4376-4385. [DOI:10.1021/es404931g]
40. Etxeberria E, Gonzalez P and Pozueta J. Evidence for Two Endocytic Ttransport Pathways in Plant Cells. Plant Sci. 2009; 177 (4): 341 - 348. [DOI:10.1016/j.plantsci.2009.06.014]
41. Ovecka M, Lang I, Baluska F, Ismail A, Illes P and Lichtscheidl I.K. Endocytosis and Vesicle Trafficking during Tip Growth of Root Hairs. Protoplasma 2005; 226 (1): 39 - 54. [DOI:10.1007/s00709-005-0103-9]
42. Perez-de-Luque A. Interaction of Nanomaterials with Plants: What Do We Need for Real Applications in Agriculture? Frontiers in Environmental Sci. 2017; 5: 1-7. [DOI:10.3389/fenvs.2017.00012]
43. Ma X, Wang Q, Rossi L and Zhang W. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa. Environ. Sci. Technol. 2015; DOI: 10.1021/acs.est.5b04111. [DOI:10.1021/acs.est.5b04111]
44. Zahed H, Ghazala M and Setsuko K. Plant Responses to Nanoparticle Stress. International Journal of Molecular Science 2015; 16: 26644-26653. [DOI:10.3390/ijms161125980]
45. Hatami M. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions. Ecotoxicology and Environmental Safety 2017a; 142: 274-283. [DOI:10.1016/j.ecoenv.2017.04.018]
46. Hatami M. Stimulatory and Inhibitory Effects of Nanoparticulates on Seed Germination and Seedling Vigor Indices. M. Ghorbanpour et al. (eds.), Nanoscience and Plant-Soil Systems, Soil Biology 2017b, 48: DOI 10.1007/978-3-319-46835-8_13. [DOI:10.1007/978-3-319-46835-8_13]
47. Hatami M, Hadian J and Ghorbanpour M. Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J. Hazard. Mater. 2017; 324: 306-320. [DOI:10.1016/j.jhazmat.2016.10.064]
48. Yang J, Cao W and Rui Y. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. Journal of Plant Interactions 2017; 12: 158 - 169. [DOI:10.1080/17429145.2017.1310944]
49. Schwab F., Zhai G., Kern M., Turner A., Schnoor J.L. and Wiesner M.R. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-Critical review. Nanotoxicol. 2015; 10: 257-278. [DOI:10.3109/17435390.2015.1048326]
50. Etxeberria E., Gonzalez P., Baroja-Fernandez E. and Romero J.P. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal. Behav. 2006; 1: 196-200. [DOI:10.4161/psb.1.4.3142]
51. Wong M.H., Misra R.P., Giraldo J.P., Kwak S.0Y., Son Y., Landry M.P. and et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 2016; 16: 1161 - 1172. [DOI:10.1021/acs.nanolett.5b04467]
52. Serag M.F., Kaji N., Gaillard C., Okamoto Y., Terasaka K., Jabasini M. and et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 2011; 5: 493 - 499. [DOI:10.1021/nn102344t]
53. Wu B. and Beitz E. Aquaporins with selectivity for unconventional permeants. Cell. Mol. Life Sci. 2007; 64: 2413 - 2421. [DOI:10.1007/s00018-007-7163-2]
54. Roberts A.G. and Oparka K.J. Plasmodesmata and the control of symplastic transport. Plant Cell Environ. 2003; 26: 103-124. [DOI:10.1046/j.1365-3040.2003.00950.x]
55. Zhai G., Walters K.S., Peate D.W., Alvarez P.J. and Schnoor J.L. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ. Sci. Technol. Lett. 2014; 1: 146 - 151. [DOI:10.1021/ez400202b]
56. Rispail N., De Matteis L., Santos R., Miguel A.S., Custardoy L., Testillano P. and et al. Quantum dots and superparamagnetic nanoparticles interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl. Mater. Interfaces 2014; 6: 9100-9110. [DOI:10.1021/am501029g]
57. Ghorbanpour M, Hatami M and Hatami M. Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nano-sized titanium dioxide and bulk application. Acta Agric. Slov. 2015; 105: 23-32. [DOI:10.14720/aas.2015.105.1.03]
58. Jamshidi M. and Ghanati F. Taxanes content and cytotoxicity of hazel cells extract after elicitation with silver nanoparticles. Plant Physiol. Biochem. 2017; 110: 178-184. [DOI:10.1016/j.plaphy.2016.04.026]
59. Amuamuha L, Pirzad A and Hadi H. Effect of varying concentrations and time of nanoironfoliar application on the yield and essential oil of Pot marigold. Int. Res. J. Appl. Basic. Sci. 2012; 3: 2085 - 2090.
60. Ferreira JFS, Simon JE and Janick J. Developmental studies of Artemisia annua: flowering andartemisinin production under greenhouse and field conditions. Planta Med. 1995; 61: 167 - 170. [DOI:10.1055/s-2006-958040]
61. Baldi A and Dixit VK. Yield enhancement strategies for artemisinin production by suspensionculture of Artemisia annua. Bioresour. Technol. 2008; 99: 4609 - 4614. [DOI:10.1016/j.biortech.2007.06.061]
62. Bahreini M, Omidi M, Bondarian F and Gholibaygian M. Metabolites screening of nanoelicited in vitro Iranian fennel (Foeniculum vulgare). Am. J. Biol. Life Sci. 2015; 3 (5): 194-198.
63. Billia AR, Flamini G, Tagioli V, Morelli I and Vincieri FF. GC-MS analysis of essential oil ofsome commercial Fennel teas. Food Chem. 2002; 76 (3): 307 - 310. [DOI:10.1016/S0308-8146(01)00277-1]
64. Gurdip S, Maurya S, de Lampasona MP and Catalan C. Chemical constituents, antifungal andantioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control 2006; 17: 745 - 752. [DOI:10.1016/j.foodcont.2005.03.010]
65. Chaouche T, Haddouchi F, Lazouni HA and Bekkara FA. Phytochemical study of the plant Foeniculum vulgare Mill. Pharm. Lett. 2011; 3 (2): 329 - 333.
66. Aghajani Z., Pourmeidani A. and Ekhtiyari R. Effect of Nano-silver on Stages of Plant Growth and Yield and Composition of Essential of Thymus kotchyanus Boiss. & Hohen. Afr. J. Agric. Res. 2013; 8: 707 - 710.
67. Ghorbanpour M and Hatami H. Changes in growth, antioxidant defense system and major essential oils constituents of Pelargonium graveolens plant exposed to nano-scale silver and thidiazuron. Ind. J. Plant Physiol. 2015; 20 (2): 116 - 123. [DOI:10.1007/s40502-015-0145-8]
68. Bakkali F., Averbeck S., Averbeck D. and Idaomar M. Biological Effects of Essential Oils. Rev. Food Chem. Toxicol. 2008; 46: 446 - 475. [DOI:10.1016/j.fct.2007.09.106]
69. Ram P., Kumar B., Naqvi A.A., Verma R.S. and Patra N.K. Post-harvest Storage Effect on Quality and Quantity of Rose-scented Geranium [Pelargonium sp. cv. Bourbon] Oil in Uttarancha. Flavour Fragr. J. 2005; 20: 666 - 668. [DOI:10.1002/ffj.1544]
70. Swamy K.N. and Rao S.S.R. Effect of 24-epibrassinolide on Growth, Photosynthesis, and Essential oil Content of Pelargonium graveolens L. Herit. Russ. J. Plant Physl. 2009; 56: 616-620. [DOI:10.1134/S1021443709050057]
71. Osawa T. Novel Natural Antioxidants for Utilization in Food and Biological Systems, in: I. Uritani, V.V. Garcia, E.M. Mendoza (Eds.), Postharvest Biochemistry of Plant Food-Materials in the Tropics, Japan Scientific Societies Press, Tokyo, Japan, 1994, pp: 241-251.
72. Reynolds T. Aloe chemistry. In: Reynolds T (ed) The genus Aloe. CRC Press, Boca Raton, 2004, pp: 39-74. [DOI:10.1201/9780203476345]
73. Hasanuzzaman M, Ahamed KU, Khalequzzaman KM, Shamsuzzaman AMM, Nahar K Plant characteristics, growth and leaf yield of Aloe vera L. as affected by organic manure in potculture. Aust. J. Crop Sci. 2008; 2 (3): 158 - 163.
74. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plantgrowth metabolism. Process Biochem. 2012; 47:651-658. [DOI:10.1016/j.procbio.2012.01.006]
75. Deltito J and Beyer D. The scientific, quasi-scientific and popular literature on the use of St.John's Wort in the treatment of depression. J. Affect. Disord. 1998; 51: 245 -251. [DOI:10.1016/S0165-0327(99)00008-7]
76. Dias ACP, Tomas-Barberan FA, Fernandes-Ferreira M and Ferreas F Unusual flavonoidsproduced by callus cultures of Hypericum perforatum. Phytochemistry 1998; 48: 1156 - 1168. [DOI:10.1016/S0031-9422(97)00963-1]
77. Menke F, Champion A, Kijne J and Memelink J. A novel jasmonate- and elicitor-responsiveelement in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonateand elicitor-inducible AP2-domain transcription factor, ORCA2. Eur. Mol. Biol. Org. 2009; 18: 4455 - 4463. [DOI:10.1093/emboj/18.16.4455]
78. Heiras-Palazuelos MJ, Ochoa-Lugo MI, Gutierrez-Dorado R, Lopez Valenzuela JA, Mora-Rochin S, Milan Carrillo J and et al Technological properties, antioxidant activity and total phenolicand flavonoid content of pigmented chickpea (Cicer arietinum L.) cultivars. Int. J. Food Sci. Nutr. 2013; 64: 69 -76. [DOI:10.3109/09637486.2012.694854]
79. AL-Oubaidi HKM and Kasid NM. Increasing (phenolyic and flavonoids compounds of Cicer arietinum L. from embryo explant using titanium dioxide nanoparticle in vitro. World J. Pharmaceut. Res. 2015; 4 (11): 1791-1799.
80. Khan MS, Zaka M, Abbasi BH, Rahman LU and Shah A. Seed germination and biochemicalprofile of Silybum marianum exposed to monometallic and bimetallic alloy nanoparticles. IET Nanobiotechnol. 2016 doi:10.1049/iet-nbt.2015.0050. [DOI:10.1049/iet-nbt.2015.0050]
81. Ghorbanpour M and Hadian J. Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 2015; 94: 749 - 759. [DOI:10.1016/j.carbon.2015.07.056]
82. Oloumi H., Soltaninejad R. and Baghizadeh A. The Comparative Effects of Nano and Bulk Size Particles of CuO and ZnO on Glycyrrhizin and Phenolic Compounds Contents in Glycyrrhiza glabra L. Seedlings. Ind. J. Plant Physiol. 2015; 20: 157 - 161. [DOI:10.1007/s40502-015-0143-x]
83. Diaz J.G., Bernal A., Pomar F. and Merino F. Induction of Shikimate Dehydrogenase and Peroxidase in Pepper (Capsicum annum L.) Seedlings in Response to Copper Stress and its Relation to Lignification. J. Plant Sci. 2001; 161: 179 - 188. [DOI:10.1016/S0168-9452(01)00410-1]
84. Cristina B. and Constantin D. The Effect of Copper Sulphate on the Production of Flavonoids in Digitalis Lanata Cell cultures. Farmacia 2011; 59: 113-118.
85. Shimada K., Fujikawa K., Yahara K. and Nakamura T. Antioxidative Properties of Xanthone on the Auto-oxidation of Soybean in Cylcodextrin Emulsion. J. Agr. Food Chem. 1992; 40: 945 - 948. [DOI:10.1021/jf00018a005]
86. Mittler R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002; 7 (9): 405-410. [DOI:10.1016/S1360-1385(02)02312-9]
87. Li H.B., Wong C.C., Cheng K.W. and Chen F. Antioxidant Properties in vitro and Total Phenolic Contents in Ethanol Extracts from Medicinal Plants. LWT-Food Science and Technology 2008; 41: 385 - 390. [DOI:10.1016/j.lwt.2007.03.011]
88. Raliya R and Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on phosphorousmobilizingenzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric. Res. 2013; 2 (1): 48 -57. [DOI:10.1007/s40003-012-0049-z]
89. Kole C, Kole P, Randunu KM, Choudhary P, Podila R and Ke PC. Nanobiotechnology canboost crop production and quality: first evidence from increased plant biomass, fruit yield andphytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 2013; 13: 37. [DOI:10.1186/1472-6750-13-37]
90. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y and Kumar DS. Nanoparticulatematerial delivery to plants. Plant Sci. 2010; 179: 154 - 163. [DOI:10.1016/j.plantsci.2010.04.012]
91. Ponti J, Colognato R., Rauscher H., Gioria S., Broggi F., Franchini F., Pascual C., Giudetti G. and Rossi F. Colony Forming Efficiency and Microscopy Analysis of Multi-wall Carbon Nanotubes Cell Interaction. Toxicol. Lett. 2010; 197: 29-37. [DOI:10.1016/j.toxlet.2010.04.018]
92. Jalalpour Z., Shabani L., Afghani L., Sharifi-Tehrani M. and Amini S.A. Stimulatory Effect of Methyl Jasmonate and Squalestatin on Phenolic Metabolism through Induction of LOX Activity in Cell Suspension Culture of Yew. Turk. J. Biol. 2014; 38: 76 -82. [DOI:10.3906/biy-1306-91]
93. Khodakovskaya M.V., De-Silva K., Nedosekin D.A., Dervishi E., Biris A.S., Shashkov E.V., Galanzha E.I. and Zharov V.P. Complex Genetic, Photothermal, and Photoacoustic Analysis of Nanoparticle-plant Interactions, Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 1028-1033. [DOI:10.1073/pnas.1008856108]
94. Low P.S. and Merida J.R. The Oxidative Burst in Plant Defense: Function and Signal Transduction. Physiol. Plant 1996; 96: 533 -542. [DOI:10.1034/j.1399-3054.1996.960326.x]
95. Jabs T., Tschope M., Colling C., Hahlbrock K. and Scheel D. Elicitor-stimulated Ion Fluxes and O2- from the Oxidative Burst are Essential Components in Triggering Defense Gene Activation and Phytoalexin Synthesis in Parsley. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 4800 - 4805. [DOI:10.1073/pnas.94.9.4800]
96. Chong T.M., Abdullah, M.A., Lai Q.M., NorAini F.M. and Lajis N.H. Effective Elicitation Factors in Morinda elliptica Cell Suspension Culture. Process Biochem. 2005; 40: 3397 - 3405. [DOI:10.1016/j.procbio.2004.12.028]
97. Marslin G, Caroline J, Sheeba C.J and Franklin G. Nanoparticles Alter Secondary Metabolism in Plants via ROS Burst. Frontiers in Plant Sci. 2017; 8: Article 832. [DOI:10.3389/fpls.2017.00832]
98. Sosan A., Svistunenko D., Straltsova D., Tsiurkina K., Smolich I., Lawson T. and et al. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J. 2016; 85: 245 - 257. [DOI:10.1111/tpj.13105]
99. Mirzajani F., Askari H., Hamzelou S., Schober Y., Rompp A., Ghassempour A. and et al. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol. Environ. Saf. 2014; 108: 335 - 339. [DOI:10.1016/j.ecoenv.2014.07.013]
100. Khan M.N., Mobin M., Abbas Z.K., Almutairi K.A. and Siddiqui Z.H. Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 2017; 110: 194 - 209. [DOI:10.1016/j.plaphy.2016.05.038]
101. Vasconsuelo A. and Boland R. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci. 2007; 172: 861 - 875. [DOI:10.1016/j.plantsci.2007.01.006]
102. Schluttenhofer C. and Yuan L. Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol. 2015; 167: 295 - 306. [DOI:10.1104/pp.114.251769]
103. Phukan U.J., Jeena G.S. and Shukla R.K. WRKY transcription factors: molecular regulation and stress responses in plants. Front. Plant Sci. 2016; 7: 760. [DOI:10.3389/fpls.2016.00760]
104. Eom H.-J. and Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ. Sci. Technol. 2010; 44: 8337 - 8342. [DOI:10.1021/es1020668]
105. Lim D., Roh J.Y., Eom H.J., Choi J.Y., Hyun J. and Choi J. Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 2012; 31: 585 - 592. [DOI:10.1002/etc.1706]
106. Kohan-Baghkheirati E. and Geisler-Lee J. Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials 2015; 5: 436 - 467. [DOI:10.3390/nano5020436]
107. Abdel-Lateif K., Bogusz D. and Hocher V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal. Behav. 2012; 7: 636 -641. [DOI:10.4161/psb.20039]
108. Franklin G., Conceição L.F.R., Kombrink E. and Dias A.C.P. Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry 2009; 70: 60 - 68. [DOI:10.1016/j.phytochem.2008.10.016]
109. Ramakrishna A. and Ravishankar G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011; 6: 1720 - 1731. [DOI:10.4161/psb.6.11.17613]
110. Briskin D.P. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol. 2000; 124: 507 - 514. [DOI:10.1104/pp.124.2.507]
111. Jasim B., Thomas R., Mathew J. and Radhakrishnan E.K. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm. J. 2017; 25: 443 - 447. [DOI:10.1016/j.jsps.2016.09.012]
112. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N and Kalaichelvan PT. Effectof biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plantgrowth metabolism. Process Biochem. 2012; 47: 651 - 658. [DOI:10.1016/j.procbio.2012.01.006]
113. Shakeran Z, Keyhanfar M, Asghari G and Ghanadian M. Improvement of atropine production by different biotic and abiotic elicitors in hairy root cultures of Datura metel. Turk. J. Biol. 2015; 39: 111 - 118. [DOI:10.3906/biy-1405-25]
114. Yasur J. and Rani P.U. Environmental Effects of Nanosilver: Impact on Castor Seed Germination, Seedling Growth, and Plant Physiology. Environ. Sci. Pollut. Res. 2013; 20: 8636 - 8648. [DOI:10.1007/s11356-013-1798-3]
115. Corral-Diaz B., Peralta-Videa J.R., Alvarez-Parrilla E., Rodrigo-Garcia J., Morales M.I., Osuna-Avila P., Niu G., Hernandez-Viezcas J.A. and Gardea- Torresdey J.L. Cerium Oxide Nanoparticles Alter the Antioxidant Capacity but do not Impact Tuber Ionome in Raphanus sativus L. Plant Physiol. Biochem. 2014; 84: 277-285. [DOI:10.1016/j.plaphy.2014.09.018]
116. Zhao L., Huang Y., Hu J., Zhou H., Adeleye A.S. and Keller AA. 1H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress. Environ. Sci. Technol. 2016; 50: 2000-2010. [DOI:10.1021/acs.est.5b05011]
117. Vecerova K, Vecera Z, Docekal B, Oravec M, Pompeiano A, Triska J and Urban O. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environmental Pollution 2016; 218: 207-218. [DOI:10.1016/j.envpol.2016.05.013]
118. Tan W, Du W, Ana C.B, Armendariz Jr. R, Zuverza-Mena N, Ji Z, Chang CH, Zink JI, Hernandez-Viezcas JA, Peralta-Videa JR and Gardea-Torresdey JL. Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. 2017; 222: 64-72. [DOI:10.1016/j.envpol.2017.01.002]
119. Chegini E., Ghorbanpour M., Hatam M. and Taghizadeh M. Effect of Multi-Walled Carbon Nanotubes on Physiological Traits, Phenolic Contents and Antioxidant Capacity of Salvia mirzayanii Rech. f. & Esfand. under Drought Stress. J. Med. Plants 2017; 16 (2): 191-207.
120. Hatami M., Hosseini SM., Ghorbanpour M., and Kariman K. Physiological and antioxidative responses to GO/PANI nanocomposite in intact and demucilaged seeds and young seedlings of Salvia mirzayanii. Chemosphere 2019; 233: 920-935. [DOI:10.1016/j.chemosphere.2019.05.268]
121. Tian H., Ghorbanpour M., and Kariman K. Manganese oxide nanoparticle-induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.). Industrial Crops and Products 2018; 126: 403-414. [DOI:10.1016/j.indcrop.2018.10.042]
122. Beulah P., Jinu U., Ghorbanpour M., and Venkatachalam P. Green Engineered Chitosan Nanoparticles and Its Biomedical Applications-An Overview. In: M. Ghorbanpour and SH. Wani (eds.), Advances in Phytonanotechnology: From Synthesis to Application. Elsevier Academic Press. 2019; DOI: 10.1016/B978-0-12-815322-2.00015-8. [DOI:10.1016/B978-0-12-815322-2.00015-8]
123. Rastogi A., Tripathi D.K., Yadav S., Chauhan D.K., Živčák M., Ghorbanpour M., El-Sheery N.I., and Brestic M. Application of silicon nanoparticles in agriculture. 3Biotech 2019; 9:90. [DOI:10.1007/s13205-019-1626-7]
124. Fahimirad S., Ajalloueian F., and Ghorbanpour M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicology and Environmental Safety 2019; 168: 260-278. [DOI:10.1016/j.ecoenv.2018.10.017]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb