year 19, Issue 73 (3-2020)                   J. Med. Plants 2020, 19(73): 119-132 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohseni I, Peeri M, Azarbayjani M A. Dietary supplementation with Salvia officinalis L. and aerobic training attenuates memory deficits via the CREB-BDNF pathway in amyloid beta- injected rats. J. Med. Plants 2020; 19 (73) :119-132
1- Department of Exercise Physiology, Faculty of Physical education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran ,
2- Department of Exercise Physiology, Faculty of Physical education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract:   (3209 Views)
Background: AD is a neurodegenerative disorder in which there is a gathering of beta-amyloid plaques, primarily in the hippocampus, that lead to neuronal death. Exercise training and botanical medications can play a role in the prevention and treatment of neurodegenerative disorders. Objective: The aim of this study was to determine the effects of aerobic training and Salvia officinalis extract on the improvement of learning and memory deficits in amyloid beta -injected rats. Methods: Rats were injected with an Aβ solution into the CA1 hippocampal region. Rats were then exposed to treadmill exercise and S. officinalis extract for 4 weeks, at which point they performed the MWM. Additionally, we studied the molecular factors involved in neuronal plasticity, such as CREB and BDNF. The animals were also evaluated histologically to determine the deposition of Aβ in the brain tissue. Results: The results showed that aerobic training and S. officinalis improved learning and memory in the behavioral test. The results of the molecular analysis showed that CREB and BDNF levels were attenuated in the Aβ-injected rats in comparison with the control group. The density of surviving neurons was considerably higher in the training-extract-Aβ group (P<0.01) and extract-Aβ group (P<0.05) than the negative control groups. Conclusion: In the present study, behavioraltesting and biochemical analysis demonstrated that aerobic training and S. officinalis extract treatment for 4 weeks protects against memory deficits in Aβ-injected rats.
Full-Text [PDF 889 kb]   (1343 Downloads)    
Type of Study: Research | Subject: Pharmacology & Toxicology
Received: 2018/11/8 | Accepted: 2019/01/8 | Published: 2020/06/6

1. Jhoo JH, K.H.C, Nabeshima T, Yamada K, Shin E-J and Jhoo W-K. Beta-amyloid (1-42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex. Behavioural Brain Res. 2004; 155 (2): 185-96. [DOI:10.1016/j.bbr.2004.04.012]
2. Ladiwala AR, L.J., Kane RS, Aucoin DS, Smith SO and Ranjan S. Conformational differences between two amyloid beta oligomers of similar size and dissimilar toxicity. Biological Chem. 2003; 287 (29): 24765-73. [DOI:10.1074/jbc.M111.329763]
3. Barnes CA, S.M., Shen J and McNaughton BL. Multistability of cognitive maps in the hippocampus of old rats. Nature 1997; 388 (6639): 272-5. [DOI:10.1038/40859]
4. Vann SD B.M., Erichsen JT and Aggleton JP. Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests. Neuroscience 2000; 20 (7): 2711-8. [DOI:10.1523/JNEUROSCI.20-07-02711.2000]
5. Vann SD, Brown MW and Aggleton JP. Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience 2000; 101 (4): 983-91. [DOI:10.1016/S0306-4522(00)00288-8]
6. Tchantchou F, Xu Y, Wu Y, Christen Y and Luo Y. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer's disease. FASEB. 2007; 21 (10): 2400-8. [DOI:10.1096/fj.06-7649com]
7. Lou S, L.J., Chang H and Chen P. Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res. 2008; 1210: 48-55. [DOI:10.1016/j.brainres.2008.02.080]
8. Liu YF, C.H., Wu CL, Kuo YM, Yu L and Huang AM. Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain derived neurotrophic factor and synaptotagmin I. Physiol. 2009; 587: 3221-31. [DOI:10.1113/jphysiol.2009.173088]
9. Hosseini S, M.S., Kordi MR, Shabkhiz F and Fallah Omran S. Effect of short term and light forced treadmill running on BDNF and TrkB in the hippocampus of adult wistar male rats. RJMS. 2012; 19 (101): 61-7.
10. Wu A, Ying Z and Gomez-Pinilla F. Omega‑3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. Neurotrauma 2007; 24: 1587-1595. [DOI:10.1089/neu.2007.0313]
11. Seifert T, B.P., Wissenberg M, Rasmussen P, Nordby P and Stallknecht B. Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010; 298: 372-377. [DOI:10.1152/ajpregu.00525.2009]
12. Molteni R, Ying Z and Gómez-Pinilla F. Differential effect of acute and chronicexercise on plasticity-related genes in therat hippocampus revealed by microarray. Neuroscience 2002; 16: 1107-1116. [DOI:10.1046/j.1460-9568.2002.02158.x]
13. Suijo K, I.S., Ohya Y, Odagiri Y, Takamiya T and Ishibashi H. Resistance exercise enhances cognitive function in mouse. Int. J. Sports Med. 2013; 34 (4): 368-75. [DOI:10.1055/s-0032-1323747]
14. Lee MC1, O.M., Liu YF, Inoue K, Matsui T and Nogami H. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling. Appl. Physiol. 2012; 113 (8): 1260-6. [DOI:10.1152/japplphysiol.00869.2012]
15. Ravasi AA, P.P., Kordi M R and Hedayati M. The Effects of Resistance and Endurance Training on BDNF and Cortisol Levels in Young Male Rats. Sport Biosci. 2013; 16: 49-78.
16. Aoki C, W.K., Elste A, Len G, Lin S, McAuliffe G and Black IB. Localization of brain-derived neurotrophic factor and TrkB receptors to postsynaptic densities of adult rat cerebral cortex. Neurosci. Res. 2000; 59 (3): 454-63.<454::AID-JNR21>3.0.CO;2-H [DOI:10.1002/(SICI)1097-4547(20000201)59:33.0.CO;2-H]
17. Molteni R, Ying Z and Gómez-Pinilla F. Differential effects of acute and chronic exercise on plasticityrelated genes in the rat hippocampus revealed by microarray. Eur. J. Neurosci. 2002; 16: 1107-16. [DOI:10.1046/j.1460-9568.2002.02158.x]
18. Vaynman S, Ying Z and Gomez-Pinilla F. Interplay between brain- derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic -plasticity Neurosci Let. 2003; 122 (3): 647-57. [DOI:10.1016/j.neuroscience.2003.08.001]
19. Finkbeiner S, T.S., Maloratsky A, Jacobs KM, Harris KM and Greenberg ME. CREB: a major mediator of neuronal neurotrophin responses. Neuron 1997; 19: 1031-47. [DOI:10.1016/S0896-6273(00)80395-5]
20. Vaynman S, Ying Z and Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 2004; 20: 2580-2590. [DOI:10.1111/j.1460-9568.2004.03720.x]
21. Oliff HS, B.N., Isackson P and Cotman CW. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Mol. Brain. Res. 1998; 61 (1-2): 147-53. [DOI:10.1016/S0169-328X(98)00222-8]
22. Rice-Evans CA, M.N. Antioxidant activities of flavonoids as bioactive components of food. Biochem. Soc. Trans. 1996; 24: 790-5. [DOI:10.1042/bst0240790]
23. Sul D, K.H., Lee D, Joo SS, Hwang KW and Park SY. Protective effect of caffeic acid against beta-amyloid-inducedneurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci. 2009; 84: 257-62. [DOI:10.1016/j.lfs.2008.12.001]
24. Khodagholi F, A. Dietary supplementation with Salvia sahendica attenuates memory deficits, modulates CREB and its down-stream molecules and decreases apoptosis in amyloid beta-injected rats. Behav. Brain. Res. 2013; 15 (241): 62-9. [DOI:10.1016/j.bbr.2012.11.026]
25. Clifford MN, Wu W, Kirkpatrick J and Kuhnert N. Profiling the chlorogenic acids and other caffeic acid derivatives ofherbal chrysanthemum by LC-MSn. Agric. Food Chem. 2007; 55: 929-36. [DOI:10.1021/jf062314x]
26. Clifford MN, Zheng W and Kuhnert N. Profiling the chlorogenic acids of aster by HPLC-MS (n). Phytochem. Anal. 2006; 17: 384-93. [DOI:10.1002/pca.935]
27. Dao A.T., Zagaar M.A., Levine A.T., Salim S., Eriksen J.L. and Alkadhi K.A. Treadmill exercise prevents learning and memory impairment in Alzheimer's disease-like pathology. Curr. Alzheimer Res. 2013; 10 (5): 507-515. [DOI:10.2174/1567205011310050006]
28. M.W. Pfaffl, G.W.H., L. Dempfle. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002; 30 (9): 36. [DOI:10.1093/nar/30.9.e36]
29. Sisodia SS, M.L., Walker LC, Borchelt DR and Price DL. Cellular and molecular biology of Alzheimer's disease and animal models. Neuroimaging Clinics of North America 1995; 5 (1): 59-65.
30. PA D.S. The role of plant-derived drugs and herbal medicines in healthcare. Drugs 1997; 54 (6): 801-40. [DOI:10.2165/00003495-199754060-00003]
31. Eidi M, A.E. and Massih Baharc. Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition 2006; 22 (3): 321-326. [DOI:10.1016/j.nut.2005.06.010]
32. S, B. Herbal medicine in the United States: review of efficacy, safety, and regulation: grand rounds at University of California, San Francisco Medical Center. Journal of General Internal Medicine 2008; 23 (6): 854-9. [DOI:10.1007/s11606-008-0632-y]
33. Kennedy DO and Scholey AB. The psychopharmacology of European herbs with cognition-enhancing properties. Current Pharmaceutical Design. 2006; 12 (35): 4613-23. [DOI:10.2174/138161206779010387]
34. Etnier JL. Brain function and exercise. Sport Med. 1995; 19 (2): 81-5. [DOI:10.2165/00007256-199519020-00001]
35. Samorajski T, Delaney C, Durham L, Ordy JM, Johnson JA and Dunlap WP. Effect of exercise on longevity, body weight, locomotor performance and passive -avoidance memory of c57 B1/66mice. Neuro. Boil. Aging. 1985; 1: 17-24. [DOI:10.1016/0197-4580(85)90066-1]
36. Uysal N, Tugyan K, Kayatekin BM, Acikgoz O, Bagriyanik HA, Gonenc S, Ozdemir D, Aksu I, Topcu A and Semin I. The effect of regular aerobic exercise in adolescent period on hippocampal neuron density, apoptosis and spatial memory. Neurosci. Let. 2005; 383 (3): 241-5. [DOI:10.1016/j.neulet.2005.04.054]
37. Sim YJ, Kim SS, Kim JY, Shin MS and Kim CJ. Treadmill exercise improves short-term memory by suppressing ischemia- induced apoptosis of neuronal cells in gerbils. Neurosci. Lett. 2004; 372 (3): 256-61. [DOI:10.1016/j.neulet.2004.09.060]
38. Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF and Greenough WT. Exrecise, experience and the aging brain. Neurobiol. Aging. 2002; 23: 941-955. [DOI:10.1016/S0197-4580(02)00028-3]
39. Apelt J, Bigl M, Wunderlich P and Schliebs R. Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activityand beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. International Journal of Developmental Neuroscience 2004; 22 (7): 475-84. [DOI:10.1016/j.ijdevneu.2004.07.006]
40. Nitta A, Itoh A, Hasegawa T and Nabeshima T. Beta-amyloid protein-induced Alzheimer's disease animal model. Neuroscience Letters 1994; 170 (1): 63-6. [DOI:10.1016/0304-3940(94)90239-9]
41. Ashabi G, Ramin M Azizi P, Taslimi Z, Alamdary SZHaghparast A, Ansari N, Motamedi F and Khodagholi F. ERK and p38 inhibitors attenuate memory deficits and increase CREB phosphorylationand PGC-1alpha levels in Abeta-injected rats. Behavioural Brain Res. 2012; 232 (1): 165-73. [DOI:10.1016/j.bbr.2012.04.006]
42. Ramin M, Azizi P, Motamedi F, Haghparast A and Khodagholi F. Inhibition of JNK phosphorylation reverses memory deficit induced by beta-amyloid (1-42) associated with decrease of apoptotic factors. Behavioural Brain Res. 2011; 217 (2): 424-31. [DOI:10.1016/j.bbr.2010.11.017]
43. Ventura-Clapier R, Garnier A and Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovascular Res. 2008; 79 (2): 208-17. [DOI:10.1093/cvr/cvn098]
44. S. Dworkin, T.M. Targeting CREB signalling in neurogenesis. Expert Opin. Ther. Targets. 2010; 14 (8): 869-879. [DOI:10.1517/14728222.2010.501332]
45. S.C. Pandey, H.Z., A. Roy, K. Misra. Central and medial amygdaloid brain-derived neurotrophic factor signaling plays a critical role in alcohol-drinking and anxiety-like behaviors. J. Neurosci. 2006; 26 (32): 8320-8331. [DOI:10.1523/JNEUROSCI.4988-05.2006]
46. Maghsoud Peeri S.A. Protective effect of exercise in metabolic disordres are mediate by inhibition of mitochondrial -derived sterile inflamation. Medicla Hypothesis 2015; 85: 707-709. [DOI:10.1016/j.mehy.2015.10.026]
47. Kim SH, Kim HB, Jang MH, Lim BV, Kim YJ, Kim YP, Kim SS, Kim EH and Kim CJ. Treadmill exercise increases cell proliferation without Altering of apoptosis in dentate gyrus of Sprague- dawley rats. Life Sci. 2002; 71: 1331-1341. [DOI:10.1016/S0024-3205(02)01849-0]
48. Krishna G, A.R., Zhuang Y, Ying Z, Paydar A, Harris NG, Royes LF and Gomez-Pinilla F. 7,8-dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: Implications for early brain trauma recovery.Biochim Biophys Acta. 2017 Jun; 1863(6): 1204-1213. [DOI:10.1016/j.bbadis.2017.03.007]
49. Lin Y, Lu X, Dong J, He X, Yan T, Liang H, Sui M, Zheng X, Liu H, Zhao J and Lu X. Involuntary. Forced and Voluntary Exercises Equally Attenuate Neurocognitive Deficits in Vascular Dementia by the BDNF-pCREB Mediated Pathway. Neurochem. Res. 2015; 40 (9): 1839-48. [DOI:10.1007/s11064-015-1673-3]
50. García-Mesa Y, P.-G.H., Bonet-Costa V, Revilla S, Gómez-Cabrera MC, Gambini J, Giménez-Llort L, Cristòfol R, Viña J and Sanfeliu C. Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms. Psychoneuroendocrinol. 2014; 45: 154-66. [DOI:10.1016/j.psyneuen.2014.03.021]
51. Yang JL, Lin YT, Chuang PC, Bohr VA and Mattson MP. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Med. 2014; 16 (1): 161-74. [DOI:10.1007/s12017-013-8270-x]
52. Jeon S, B.S., Hur J, Jun K, Kim YK, Cho KS and Koo BS. A. modified formulation of Chinese traditional medicine improves memory impairment and reduces Aβ level in the Tg-APPswe/PS1dE9 mouse model of Alzheimer's disease. Ethnopharmacol. 2011; 137 (1): 783-9. [DOI:10.1016/j.jep.2011.06.046]
53. Shih AY, I.S., Barakauskas V, Erb H, Jiang L and Li P. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. Journal of Biological Chem. 2005; 280 (24): 22925-36. [DOI:10.1074/jbc.M414635200]
54. Mahsa Sadeghi M.P and Mir-jamal Hosseini. Adolescent voluntary exercise attenuated hippocampal innate immunity responses and depressive-like behaviors following maternal separation stress in male rats. Physiology & Behavior. 2016; 163: 177-183. [DOI:10.1016/j.physbeh.2016.05.017]
55. Perry EK, P.A., Wang WW, Houghton P and Perry NS. Medicinal plants and Alzheimer's disease: integrating ethnobotanical and contemporary scientific evidence. J. Alternative and Complementary Medicine 1998; 4 (4): 419-28. [DOI:10.1089/acm.1998.4.419]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb