year 18, Issue 72 And S12 (Supplement 12 2019)                   J. Med. Plants 2019, 18(72 And S12): 186-203 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi S, Hatami M, Ghorbanpour M. Effect of Seed Priming with Nanosilicon on Morpho-Physiological Characterestics, Quercetin Content and Antioxidant Capacity in Calendula officinalis L. under Drought Stress Conditions. J. Med. Plants 2019; 18 (72) :186-203
URL: http://jmp.ir/article-1-2309-en.html
1- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
2- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran , m-hatami@araku.ac.ir
Abstract:   (4179 Views)
Background: Silicon is the second most structural element in the earth, which in plants, in induces physiological processes and causes resistance to biotic and abiotic stresses as well.
Objective: The effect of seed priming with nanosilicon under different levels of drought stress on morphological, physiological, total phenol and flavonoid contents, quercetin levels and antioxidant capacity of the Calendula officinalis L.
Method: This study was conducted as factorial experiment in a randomized complete block design (RCBD) under four levels of drought stress (25, 50, 75 and 100 %FC), and different concentrations (0, 100, 200 and 500 mg/L) of silicon nanoparticles was considered as seed priming treatment.
Results: The results showed that drought stress levels and seed priming with nanosilicon at the various concentrations caused significant changes (P < 0.05) on measured traits of plant. The highest antioxidant activity of the obtained extract was observed in plants pretreated with nanosilicone at 200 mg/L under 25 %FC. Drought stress at moderate level (50 %FC) along with seed priming with nanosilicone at 100 mg /L had the highest effect on quercetin content. Furthermore, the highest and the lowest content of total flavonoid was observed in plants pretreated with silicon nanoparticles at 200 mg/L and control (without priming) under drought stress at 25 %FC, respectively.
Conclusion: Applicationof nanosilicone at lower concentrations (100-200 mg/L) and drought stress at 50 %FC may improve plant physiological and metabolite indices in marigold.
Full-Text [PDF 769 kb]   (1265 Downloads)    
Type of Study: Research | Subject: Agriculture & Ethnobotany
Received: 2018/10/8 | Accepted: 2019/01/12 | Published: 2020/03/7

References
1. Torney F, Trewyn BG, Lin VSY, Wang K., Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nano Tech. 2007; 2: 295 - 300. [DOI:10.1038/nnano.2007.108]
2. Albulescu M, Alexa N, Cojan C. Calendula officinalis flowers, source of extracts with antioxidant activity. Ann. West Univ. Timisoara Ser Chem. 2004; 13 (2): 169-176.
3. Jan N, John R. Calendula officinalis -An Important Medicinal Plant with Potential Biological Properties. Proc. Indian Natn. Sci. Acad. 2017; 83: 769-787.
4. Shekari F, Baljani R, Saba J and Afsahi K. effect of priming with salicylic acid on the properties borage seedlings (Barago officinalis). J. Modern Agricultural Sci. 2010; 18: 47 - 53.
5. Demir Kaya M, Okcu G, Atak M A and Kolsarici O. Seed treatment to overcome salt and drought stress during germination in sunflower. European Journal of Agronomy 2006; 24: 291 - 5. [DOI:10.1016/j.eja.2005.08.001]
6. Masoudi P, Gezancheyan A, Jajarami V and Bozorgmehr A. Effect of seed treatment on germination and seedling vigor in three species of permanent grass under salinity stress. JAST. 2008; 22: 57 - 67.
7. Basra MAS, Ashraf M, Iqbal N, Khliq A and Ahmad R. Physiologycal and biochemical aspect of pre-sowing heat stress on cotton seed. SST. 2004; 32: 765 - 74. [DOI:10.15258/sst.2004.32.3.12]
8. Omidi H, Movahadi F and Movahadi S H. The effect of salicylic acid and scarification on germination characteristics and proline, protein and soluble carbohydrate content of Prosopis (Prosopis farcta L.) seedling under salt stress. Rang. Des. Res. 2012; 18: 608 - 23.
9. Siddique MRB, Hamid A and Islam MS. Drought stress effects on photosynthetic rate and leaf gas exchange of wheat. Botanical Bulletin of Academia Sinica. 1999; 40: 141 - 5.
10. Yordanov V and Tsoev T. Plant responses to drought, acclimation and stress tolerance. Photosynthica 2000; 38: 171 - 86. [DOI:10.1023/A:1007201411474]
11. Bhatt RM and Srinivasa-Rao NK. Influence of pod load on response of okra to water stress. Indian Journal Plant Physiol. 2005; 10: 54 - 9.
12. Hatami M, Kariman K and Ghorbanpour M. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Science of the Total Environment 2016; 571: 275 - 91. [DOI:10.1016/j.scitotenv.2016.07.184]
13. Ghorbanpour M, Hatami M and Hatami M. Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nano-sized titanium dioxide and bulk application. Acta Agric. Slov. 2015; 105: 23 - 32. [DOI:10.14720/aas.2015.105.1.03]
14. Bao-Shan L, Shao-qi D, Chun-hui L, Li-jun F, Shu-chun Q, Min Y. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. Forest Res. 2004; 15: 138 - 40. [DOI:10.1007/BF02856749]
15. Siddiqui MH, Al-Whaibi MH, Sakran AM, Ali HM, Basalah MO, FaisalM, Alatar A and Al-Amri AA. Calcium-induced amelioration of boron toxicity in radish. J. Plant Growth Regul. 2013; 32: 61 - 71. [DOI:10.1007/s00344-012-9276-6]
16. Yinfeng X, Bo L, Qianqian Z, Chunxia Z, Kouping L and Gongsheng T. Effects of nano-TiO2 on photosynthetic characteristics of Indocalamus barbatus. J. Northeast Forest Uni. 2011; 39: 22 - 5.
17. Amira MS, Abdul Qados and Ansary EM. Influence of Silicon and Nano-Silicon on Germination, Growth and Yield of Faba Bean (Vicia faba L.) Under Salt Stress Conditions. American J. Experimental Agriculture 2015; 5 (6): 509 - 24. [DOI:10.9734/AJEA/2015/14109]
18. EL-Kady ME, El-Boray MS, Shalan AM and Lamiaa M. Effect of silicon dioxide nanoparticles on growth improvement of banana shoots in vitro within rooting stage. J. Plant Production, Mansoura Univ. 2017; 8 (9): 913 - 6. [DOI:10.21608/jpp.2017.40900]
19. Emam MM, Khattab HE, Helal NM and Deraz AE. Effect of selenium and siliconon yield quality of rice plant grown under drought stress. AJCS. 2014; 8: 596 - 605.
20. Hatami M, Hadian J and Ghorbanpour M. Mechanism's underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J. Hazardous Materials 2017; 324: 306 - 20. [DOI:10.1016/j.jhazmat.2016.10.064]
21. Baiazidi-Aghdam MT, Mohammadi H and Ghorbanpour M. Effects of nanoparticulateanatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. Braz. J. Bot. 2016; 39: 139 - 46. [DOI:10.1007/s40415-015-0227-x]
22. Hatami M and Ghorbanpour M. Defense enzyme activities and biochemical variations of Pelargonium zonale in response to nanosilver application and dark storage. Turkish Journal of Biol. 2014; 38: 130 - 9. [DOI:10.3906/biy-1304-64]
23. Ferrat IL and Lova CJ. Relation between relative water content, Nitrogen pools and growth of Phaseolus vulgaris L. and P. acutifolius, A. Gray during water deficit. Crop Science 1999; 39: 467 - 74. [DOI:10.2135/cropsci1999.0011183X0039000200028x]
24. Karlidag H, Yildirim E and Turan M. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Science Agriculture 2009; 66 (2): 180 - 7. [DOI:10.1590/S0103-90162009000200006]
25. Porra RJ. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Res. 2002; 73: 149 - 56. [DOI:10.1023/A:1020470224740]
26. Sims DA and Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002; 81: 337 - 54. [DOI:10.1016/S0034-4257(02)00010-X]
27. Lichtenthaler HK and Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Transac. 1983; 11: 591 - 2. [DOI:10.1042/bst0110591]
28. Meda A, Lamien C, Romito E, Millogo M J and Nacoulma O G. Determination of the total phenolic, flavonoid and pralin contents in Burkina Fasan honey, as well as their scavenging activity. Food Chem. 2005; 91: 571 - 7. [DOI:10.1016/j.foodchem.2004.10.006]
29. Chang C, Yang M, Wen H and Chern J. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Food and Drug Analysis. 2002; 10: 178 - 82.
30. Shyu YS and Hwang LS. Antioxidant activity of the crude extract of lignin glycosides from unroasted Burma black sesame meal. Food Res. Int. 2002; 35: 357 - 65. [DOI:10.1016/S0963-9969(01)00130-2]
31. Osakabe Y, Osakabe K, Shinozaki K and Tran LSP. Response of plants to water stress. Front. Plant Sci. 2014; [DOI:10.3389/fpls.2014.00086]
32. Ahmed M, Hassan FU and Asif M. Amelioration of drought in sorghum (Sorghum bicolor L.) by silicon. Commun. Soil Sci. Plant Anal. 2014; 45: 470 - 86. [DOI:10.1080/00103624.2013.863907]
33. Emam MM, Khattab HE, Helal NM and Deraz AE. Effect of selenium and silicon on yield quality of rice plant grown under drought stress. AJCS. 2014; 8: 596 - 605.
34. Noman A, Ali S, Naheed F, Ali Q, Farid M, Rizwan M and Irshad MK. Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch. Agron. Soil Sci. 2015; [DOI:10.1080/03650340.2015.1028379]
35. Baiazidi-Aghdam MT, Mohammadi H, Ghorbanpour M. 2016. Effects of nanoparticulateanatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. Braz J Bot. 39: 139-146. [DOI:10.1007/s40415-015-0227-x]
36. Da Silva Lobato AK, de Oliveira Neto CF, Marques DJ and Guedes EMS. Silicon: a benefic element to improve tolerance in plants exposed to water deficiency. INTECH Open Access Publisher. 2013. [DOI:10.5772/53765]
37. Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ. Silicon alleviates PEG-induced water deficit stress in upland rice seedlings by enhancing osmotic adjustment. J. Agron Crop Sci. 2012; 198: 14 - 26. [DOI:10.1111/j.1439-037X.2011.00486.x]
38. Putra ETS, Issukindarsyah T and Purwanto BH. Physiological responses of oil palm seedlings to the drought stress using boron and silicon applications. J. Agron. Doi. 2015; 10: 3923/ja.2015.
39. Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S and Chen Y. Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci. World J. doi. 2014; 10: 1155/2014/368694. [DOI:10.1155/2014/368694]
40. Gong H, Chen K. Theregulatoryrole of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol. Plant. 2012; 34: 1589 - 94. [DOI:10.1007/s11738-012-0954-6]
41. Shen X, Zhou Y, Duan L, Li Z, Eneji AE and Li J. Silicon effects on photosynthesis and antioxidant parameters of soybean seedling sunder drought and ultraviolet-B radiation. J. Plant Physiol. 2010; 167: 1248 - 52. [DOI:10.1016/j.jplph.2010.04.011]
42. Tarumingkeng RC and Coto Z. Effects of drought stress on growth and yield of soybean. Kisman. Science Philosopy Agricultural University. 2003, pp: 702.
43. Ashkavand P, Tabari M, Zarafshar M, Tom skova I and Struve D. Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Lesne Prace Badawcze. 2015; 76: 350 - 9. [DOI:10.1515/frp-2015-0034]
44. Blokhina O, Virolainen E and Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany 2003; 91: 179 - 94. [DOI:10.1093/aob/mcf118]
45. Sairam RK, Rao KV and Srivastava GC. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002; 163: 1037 - 46. [DOI:10.1016/S0168-9452(02)00278-9]
46. Gao X, Zou C, Wang L, Zhang F. Silicon improves water use efficiency in maize plants. J. Plant Nutrition. 2005; 27: 1457 - 70. [DOI:10.1081/PLN-200025865]
47. Maksimovic JD, Bogdanovic J, Maksimovic V and Nikolic M. Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J. Plant Nutrition and Soil Sci. 2007; 170: 739 - 44. [DOI:10.1002/jpln.200700101]
48. Ghorbanpour M, Khaltabadi Farahani A.H, Hadian J. Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration. Ecotoxicology and Environmental Safety. 2018; 148: 910-922. [DOI:10.1016/j.ecoenv.2017.11.061]
49. Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C and Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochem. 2007; 45: 244 - 9. [DOI:10.1016/j.plaphy.2007.02.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb