year 18, Issue 72 And S12 (Supplement 12 2019)                   J. Med. Plants 2019, 18(72 And S12): 103-109 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaeili S, Irani M, Moazzeni H, Mosaddegh M. Inhibition of Heme Polymerization, the Mechanism of Antimalarial Activity in Phlomis caucasica Rech.f. (Lamiaceae). J. Med. Plants 2019; 18 (72) :103-109
URL: http://jmp.ir/article-1-2278-en.html
1- Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2- Traditional Medicine and Materia Medica Research Center (TMRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran , m.irani@sbmu.ac.ir
3- Department of Botany, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
4- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Abstract:   (2922 Views)
Background: Malaria is one of the most important parasitic diseases in the world caused by Plasmodium species. The malaria parasite digests hemoglobin in vacuole to amino acids and heme. Plasmodium has got several detoxification mechanisms to protect itself from toxic heme. The most important mechanism is heme polymerization. Identifying compounds that inhibit heme polymerization is an approach for detecting antimalarial drugs.
Objective: This work has intended to screen some plants from Lamiaceae family for mechanism of antimalarial by ITHD (Inhibition Test of Heme Detoxification).
Method: Inhibition of heme polymerization of total methanol extracts from seven plants of Lamiaceae family have been evaluated by the ITHD method. Hemin Chloride, tween 20 and samples were added in each well of a 96-well plate with ratio 9:9:2, and incubated at 60ºC for 24 h. The plate was read with a micro-ELISA reader at 405 nm, and percentage of heme polymerization inhibition was calculated. The fractions including petroleum ether, chloroform, methanol, methanol: water (7:3) and water were obtained by maceration and the inhibition of heme polymerization evaluation were assessed using the ITHD.
Results: Total methanol extracts of Marrubium astracanicum Jacq. and Phlomis caucasica Rech.f. demonstrated inhibition of heme polymerization, 40 and 35% respectively. The aqueous fraction of P. caucasica inhibited heme polymerization 100%.
Conclusion: P. caucasica could be a selective candidate for drug discovery program in malaria.
Full-Text [PDF 439 kb]   (932 Downloads)    
Type of Study: Research | Subject: Traditional Pharmacy & Traditional Medicine
Received: 2018/09/18 | Accepted: 2018/12/3 | Published: 2020/03/7

References
1. Macdonald G. Harrison's Internal Medicine, 17th edition. ‐ by A. S. Fauci, D. L. Kasper, D. L. Longo, E. Braunwald, S. L. Hauser, J. L. Jameson and J. Loscalzo. Internal Medicine Journal. 2008; 38 (12): 932-932. [DOI:10.1111/j.1445-5994.2008.01837.x]
2. WHO. Fact Sheet: World Malaria Report. World Health Organization; 2017 [cited 2018 Jun 13]. Available from: http://www.who.int/malaria/media/world-malaria-report-2016/en/
3. Norouzinejad F, Ghaffari F, Raeisi A and norouzinejad A. Epidemiological status of malaria in Iran, 2011-2014. Asian Pacific Journal of Tropical Medicine 2016; 9 (11): 1055-1061. [DOI:10.1016/j.apjtm.2016.09.007]
4. Kassa M, Sileshi M, Mohammed H, Taye G and Asfaw M. Development of resistance by Plasmodium falciparum to sulfadoxine/ pyrimethamine in Amhara Region, Northwestern Ethiopia. Ethiop. Med. J. 2005; 43 (3): 181-187.
5. Edrissian G, Afshar A, Kanani A, Satvatand M and Ghorbani M. Resistance of Plasmodium falciparum to chloroquine in south eastern Iran. Medical J. the Islamic Republic of Iran. 1987; 1 (1): 46-49. [DOI:10.1016/0035-9203(87)90317-8]
6. Edrissian GH, Shahabi S, Pishva E, Hajseyed-Javadi J, Khaleghian B, Ghorbani M, Emadi A M, Afshar A and Saghari H. Imported cases of chloroquine-resistant falciparum malaria in Iran. Bull Soc Pathol Exot Filiales 1986; 79 (2): 217-221.
7. Nateghpour MM, Edrissian Gh, Torabi A, Raesi A, Motevalli-Haghi H, Abed-Khojasteh N and Ghobakhlo N. Monitoring of Plasmodium vivax and Plasmodium falciparum response to chloroquine in Bandar-Abbas district, Hormozgan province, Iran. Tehran University Medical J. 2009; 67 (3): 178-183.
8. Sherman IW. Malaria: Parasite Biology, Pathogenesis, and Protection. 1998, ASM Press.
9. Ryter SW and Tyrrell R M. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic. Biol. Med. 2000; 28 (2): 289-309. [DOI:10.1016/S0891-5849(99)00223-3]
10. Kumar S and Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicology Letters 2005; 157 (3): 175-188. [DOI:10.1016/j.toxlet.2005.03.004]
11. Sullivan DJ, Gluzman IY and Goldberg DE. Plasmodium hemozoin formation mediated by histidine-rich proteins. Science 1996; 271 (5246): 219-222. [DOI:10.1126/science.271.5246.219]
12. Francis SE, Sullivan DJ, and Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol. 1997; 51: 97-123. [DOI:10.1146/annurev.micro.51.1.97]
13. Kumar S, Guha M, Choubey V, Maity P and Bandyopadhyay U. Antimalarial drugs inhibiting hemozoin (β-hematin) formation: A mechanistic update. Life Sciences 2007; 80 (9): 813-828. [DOI:10.1016/j.lfs.2006.11.008]
14. Hajimehdipoor H, Esmaeili S, Shekarchi M, Emrarian T and Naghibi F. Investigation of some biologic activities of Swertia longifolia Boiss. Res. Pharm. Sci. 2013; 8 (4): 253-259.
15. Mosaddegh M, Irani M and Esmaeili S. Inhibition test of heme detoxification (ITHD) as an approach for detecting antimalarial agents in medicinal plants. Research J. Pharmacognosy 2018; 5 (1): 5-11.
16. Mosaddegh M, Esmaeili S, Naghibi F, Hamzeloo Moghadam M, Haeri A, Pirani A and Moazzeni H. Ethnomedical Survey and Cytotoxic Activity of Medicinal Plant Extracts Used in Kohgiluyeh and Boyerahmad Province in Iran. J. Herbs, Spices & Medicinal Plants 2012; 18 (3): 211-221. [DOI:10.1080/10496475.2012.671801]
17. Kirmizibekmez H, Atay I, Kaiser M, Yesilada E and Tasdemir D. In vitro antiprotozoal activity of extracts of five Turkish Lamiaceae species. Nat Prod. Commun. 2011; 6 (11): 1697-1700. [DOI:10.1177/1934578X1100601132]
18. Leporatti M and Ghedira K. Comparative analysis of medicinal plants used in traditional medicine in Italy and Tunisia. J. Ethnobiology and Ethnomedicine. 2009; 5 (1): 31. [DOI:10.1186/1746-4269-5-31]
19. Esmaeili S, Naghibi F, Mosaddegh M, Sahranavard S, Ghafari S and Abdullah N R. Screening of antiplasmodial properties among some traditionally used Iranian plants. J. Ethnopharmacol. 2009; 121 (3): 400-404. [DOI:10.1016/j.jep.2008.10.041]
20. Sathiyamoorthy P, Lugasi-Evgi H, Schlesinger P, Kedar I, Gopas J, Pollack Y and Golan-Goldhirsh A. Screening for Cytotoxic and Antimalarial Activities in Desert Plants of the Negev and Bedouin Market Plant Products. Pharmaceutical Biol. 2008; 37 (3): 188-195. [DOI:10.1076/phbi.37.3.188.6298]
21. Tasdemir D, Brun R, Perozzo R and Donmez A. Evaluation of antiprotozoal and plasmodial enoyl-ACP reductase inhibition potential of turkish medicinal plants. Phytother. Res. 2005; 19 (2): 162-166. [DOI:10.1002/ptr.1648]
22. Tripathi A K, Khan S I, Walker L A and Tekwani B L. Spectrophotometric determination of de novo hemozoin/β-hematin formation in an in vitro assay. Analytical Biochem. 2004; 325 (1): 85-91. [DOI:10.1016/j.ab.2003.10.016]
23. Ozbilgin A, Durmuskahya C, Kayalar H and Ostan I. Assessment of in vivo antimalarial activities of some selected medicinal plants from Turkey. Parasitol. Res. 2014; 113 (1): 165-173. [DOI:10.1007/s00436-013-3639-1]
24. Vargas S, Ndjoko Ioset K, Hay A E, Ioset J R, Wittlin S and Hostettmann K. Screening medicinal plants for the detection of novel antimalarial products applying the inhibition of β-hematin formation. J. Pharmaceutical and Biomedical Analysis 2011; 56 (5): 880-886. [DOI:10.1016/j.jpba.2011.06.026]
25. Dua V K, Verma G, Agarwal D D, Kaiser M and Brun R. Antiprotozoal activities of traditional medicinal plants from the Garhwal region of North West Himalaya, India. J. Ethnopharmacol. 2011; 136 (1): 123-128. [DOI:10.1016/j.jep.2011.04.024]
26. Ebrahimi S N, Zimmermann S, Zaugg J, Smiesko M, Brun R and Hamburger M. Abietane diterpenoids from Salvia sahendica--antiprotozoal activity and determination of their absolute configurations. Planta Med. 2013; 79 (2): 150-156. [DOI:10.1055/s-0032-1328063]
27. Madani Mousavi S N, Delazar A, Nazemiyeh H and Khodaie L. Biological Activity and Phytochemical Study of Scutellaria platystegia. Iran. J. Pharm. Res. 2015; 14 (1): 215-223.
28. Kirmizibekmez H, Calis I, Perozzo R, Brun R, Donmez AA, Linden A, et al. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis. Planta Med. 2004;70 (8): 711-717. [DOI:10.1055/s-2004-827200]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb