1. Ewii UE, Onugwu AL, Nwokpor VC, Akpaso I-a, Ogbulie TE, Aharanwa B, Chijioke Ch, Verla N, Iheme C, Ujowundu C, Anyiam Ch and Attama AA. Novel drug delivery systems: insight into self-powered and nano-enabled drug delivery systems. Nano TransMed. 2024; 3: 100042. [
DOI:10.1016/j.ntm.2024.100042]
2. Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY and Aldughaim MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles' physicochemical properties on responses in biological systems. Polymers. 2023; 15(7): 1596. [
DOI:10.3390/polym15071596]
3. Abdel-Mageed HM, AbuelEzz NZ, Radwan RA and Mohamed SA. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J. Microencapsul. 2021; 38(6): 414-36. [
DOI:10.1080/02652048.2021.1942275]
4. Saadh MJ, Hsu C-Y, Mustafa MA, Mutee AF, Kaur I, Ghildiyal P, Ali A-JA, Adil M, Ali MSh, Alsaikhan F, Narmani A, Farhood B. Advances in chitosan-based blends as potential drug delivery systems: a review. Int. J. Biol. Macromol. 2024; 273(Pt 1): 132916. [
DOI:10.1016/j.ijbiomac.2024.132916]
5. Hu X, Zhang C, Xiong Y, Ma S, Sun C and Xu W. A review of recent advances in drug loading, mathematical modeling and applications of hydrogel drug delivery systems. J. Mater. Sci. 2024; 59(32): 15077-116. [
DOI:10.1007/s10853-024-10103-x]
6. de Oliveira JL, da Silva MEX, Hotza D, Sayer C and Immich APS. Drug delivery systems for tissue engineering: exploring novel strategies for enhanced regeneration. J. Nanopart. Res. 2024; 26(7): 159. [
DOI:10.1007/s11051-024-06074-4]
7. Iqbal M, Zafar N, Fessi H and Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015; 496(2): 173-90. [
DOI:10.1016/j.ijpharm.2015.10.057]
8. Afshar M, Rezaei A, Eghbali S, Nasirizadeh S, Alemzadeh E, Alemzadeh E, Shadi M and Sedighi M. Nanomaterial strategies in wound healing: a comprehensive review of nanoparticles, nanofibres and nanosheets. Int. Wound J. 2024; 21(7): e14953. [
DOI:10.1111/iwj.14953]
9. Naveenkumar R, Senthilvelan S and Karthikeyan B. A review on the recent developments in electrospinned nanofibers for drug delivery. Biomed. Mater. Devices. 2024; 2(1): 342-64. [
DOI:10.1007/s44174-023-00121-9]
10. Gill AS, Sood M, Deol PK and Kaur IP. Synthetic polymer based electrospun scaffolds for wound healing applications. J. Drug Deliv. Sci. Technol. 2023; 89: 105054. [
DOI:10.1016/j.jddst.2023.105054]
11. Chukaew S, Parivatphun T, Thonglam J, Khangkhamano M, Meesane J and Kokoo R. Biphasic scaffolds of polyvinyl alcohol/gelatin reinforced with polycaprolactone as biomedical materials supporting for bone augmentation based on anatomical mimicking; fabrication, characterization, physical and mechanical properties, and in vitro testing. J. Mech. Behav. Biomed. Mater. 2023; 143: 105933. [
DOI:10.1016/j.jmbbm.2023.105933]
12. Teixeira MA, Amorim MTP and Felgueiras HP. Poly (vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers. 2020; 12(1): 7. [
DOI:10.3390/polym12010007]
13. Mehdi-Sefiani H, Granados-Carrera CM, Romero A, Chicardi E, Domínguez-Robles J and Perez-Puyana VM. Chitosan-type-A-gelatin hydrogels used as potentialplatforms in tissue engineering for drug delivery. Gels. 2024; 10(7): 419. [
DOI:10.3390/gels10070419]
14. Sasan S, Molavi AM, Moqadam KH, Farrokhi Nand Oroojalian F. Enhanced wound healing properties of biodegradable PCL/alginate core-shell nanofibers containing Salvia abrotanoides essential oil and ZnO nanoparticles. Int. J. Biol. Macromol. 2024; 279: 135152. [
DOI:10.1016/j.ijbiomac.2024.135152]
15. Surana KR, Mahajan SK and Patil SJ. Coumarin: A valid scaffold in medicinal chemistry. J. Adv. Sci. Res. 2021; 12(03) (Suppl 1): 21-34. [
DOI:10.55218/JASR.s1202112303]
16. Manjunatha B, Bodke YD, Nagaraja O, Lohith TN, Nagaraju G and Sridhar MA. Coumarin-benzothiazole based azo dyes: synthesis, characterization, computational, photophysical and biological studies. J. Mol. Struct. 2021; 1246: 131170. [
DOI:10.1016/j.molstruc.2021.131170]
17. Borhani G, Mazandarani M and Abbaspour H. Antioxidant, antibacterial activity, ethnopharmacology, phytochemical in different extracts of Melilotus officinalis L. as an anti-infection and anti-diabetic in traditional uses of two northern provinces from Iran. Crescent. J. Med. Biol. Sci. 2024; 11(2): 83-91. [
DOI:10.34172/cjmb.2024.3012]
18. Hashim FJ, Hussain SM and Shawkat MS. Separation, characterization and anticoagulant activity of Coumarin and its derivatives extracted from Melilotus officinalis. Biosci. Biotechnol. Res. Asia. 2017; 14(1): 13-23. [
DOI:10.13005/bbra/2412]
19. Amiri Dehkharghani R, Zandi Doust M, Tavassoti Kheiri M and Hossein Shahi H. Impacts of chemical variables on the encapsulated corticoids in poly-ε-caprolactone nanoparticles and statistical biological analysis. Russ. J. Appl. Chem. 2018; 91: 1165-71. [
DOI:10.1134/S1070427218070157]
20. Akhbarati R, Dehkharghani RA and Benisi SZ. Design a coordinated nano-platform for Coumarin-regulated delivery in line with the biological systems' growth phases. J. Polym. Environ. 2024; 33(2): 990-1005. [
DOI:10.1007/s10924-024-03458-4]
21. Isola M, Colucci G, Diana A, Sin A, Tonani A and Maurino V. Thermal properties and decomposition products of modified cotton fibers by TGA, DSC, and Py-GC/MS. Polym. Degrad. Stab. 2024; 228: 110937. [
DOI:10.1016/j.polymdegradstab.2024.110937]
22. Kontogiorgis CA and Hadjipavlou-Litina DJ. Synthesis and antiinflammatory activity of Coumarin derivatives. J. Med. Chem. 2005; 48(20): 6400-8. doi: 10.1021/jm0580149. [
DOI:10.1021/jm0580149]
23. Chi HY, Chang NY, Li C, Chan V, Hsieh JH, Tsai Y-H and Lin T. Fabrication of gelatin nanofibers by electrospinning-mixture of gelatin and polyvinyl alcohol. Polymers. 2022; 14(13): 2610. [
DOI:10.3390/polym14132610]
24. Fatima S, Mansha A, Asim S and Shahzad A. Absorption spectra of Coumarin and its derivatives. Chem. Pap. 2022; 76: 627-638. [
DOI:10.1007/s11696-021-01902-6]
25. Kumar A, Jose R, Fujihara K, Wang J and Ramakrishna S. Structural and optical properties of electrospun TiO2 nanofibers. Chem. Mater. 2007; 19(26): 6536-42. [
DOI:10.1021/cm702601t]
26. Cheng G, Kou T, Zhang J, Si C, Gao H and Zhang Z. O22-/O-functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy. 2017; 38: 155-66. [
DOI:10.1016/j.nanoen.2017.05.043]
27. Hussain M, Khan SM, Shafiq M, Abbas N, Sajjad U and Hamid K. Advances in biodegradable materials: degradation mechanisms, mechanical properties, and biocompatibility for orthopedic applications. Heliyon. 2024; 10(12): e32713. [
DOI:10.1016/j.heliyon.2024.e32713]
28. Yang D, Li Y and Nie J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr. Polym. 2007; 69(3): 538-43. [
DOI:10.1016/j.carbpol.2007.01.008]
29. Linh NTB, Min YK, Song H-Y and Lee B-T. Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. J. Biomed. Mater. Res. B Appl. Biomater. 2010; 95(1): 184-91. [
DOI:10.1002/jbm.b.31701]
30. Smith DA, Beaumont K, Maurer TS and Di L. Relevance of half-life in drug design: miniperspective. J. Med. Chem. 2018; 61(10): 4273-82. [
DOI:10.1021/acs.jmedchem.7b00969]
31. Chen CJ, Liu JT, Chang S-J, Lee M-W and Tsai J-Z. Development of a portable impedance detection system for monitoring the growth of mouse L929 cells. J. Taiwan Inst. Chem. Eng. 2012; 43(5): 678-84. [
DOI:10.1016/j.jtice.2012.04.008]
32. Hiep NT and Lee B-T. Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J. Mater. Sci. Mater. Med. 2010; 21: 1969-78. [
DOI:10.1007/s10856-010-4048-y]
33. Glinos AD, Werrlein RJ. Density dependent regulation of growth in suspension cultures of L‐929 cells. J. Cell. Physiol. 1972; 79(1): 79-90. [
DOI:10.1002/jcp.1040790109]
34. Sobhanian P, Khorram M, Hashemi S-S and Mohammadi A. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int. J. Biol. Macromol. 2019; 130: 977-87. [
DOI:10.1016/j.ijbiomac.2019.03.045]