year 24, Issue 95 (10-2025)                   J. Med. Plants 2025, 24(95): 60-76 | Back to browse issues page

Research code: ART-3949

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akhbarati R, Amiri Dehkharghani R, Ghorbani Nohooji M. Extraction and nano-encapsulation of coumarin for drug-delivery in a biodegradable scaffold with impact on L929 cell proliferation. J. Med. Plants 2025; 24 (95) :60-76
URL: http://jmp.ir/article-1-3949-en.html
1- Department of Chemistry, C. T. C, Islamic Azad University, Tehran, Iran
2- Department of Chemistry, C. T. C, Islamic Azad University, Tehran, Iran , Rah.Amiri@iauctb.ac.ir
3- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
Abstract:   (7 Views)
Background: Nano-encapsulation can control drug release and promote cell proliferation, offering significant benefits for tissue engineering in medical applications. Objective: This study focused on developing coordinated nanofibers made of gelatin/PVA and PCL nanocapsules loaded with coumarin. We aimed to evaluate (a) the platform's ability to control drug delivery, (b) its biocompatibility, and (c) its effect on the expansion of L929 cells during the exponential and adaptation growth phases. Methods: Coumarin was extracted from the Melilotus officinalis L. and nano-encapsulated using polycaprolactone (PCL). The nano-encapsulated coumarin was coated by electrospinning with polyvinyl alcohol (PVA) and gelatin to form nanofibers, chosen for their ECM-like properties. Various analytical techniques, including FTIR, 1H NMR, SEM, UV, mechanical testing, HRTEM, DSC, and HPLC, were used to evaluate the results. Cell proliferation and biological effects were assessed using the MTT method at days 1, 3, and 5. Results: PVA and gelatin provided hydrophilic properties that support optimal cell adhesion, proliferation, and function in the electrospun nanofibers. Drug release behavior showed a slower release rate in neutral environments compared with alkaline or acidic conditions, indicating pH-dependent release characteristics. No cytotoxicity was observed during evaluation, suggesting good biocompatibility of the scaffold system. Conclusion: The combination of gelatin/PVA electrospun nanofibers and PCL-loaded coumarin nanocapsules demonstrates potential as a synergistic nano-delivery system. The observed delayed drug release aligned with growth phases of the L929 cells, supporting applications in tissue engineering where controlled release and biocompatibility are essential.
Full-Text [PDF 1449 kb]   (5 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2025/07/6 | Accepted: 2025/08/19 | Published: 2025/10/2

References
1. Ewii UE, Onugwu AL, Nwokpor VC, Akpaso I-a, Ogbulie TE, Aharanwa B, Chijioke Ch, Verla N, Iheme C, Ujowundu C, Anyiam Ch and Attama AA. Novel drug delivery systems: insight into self-powered and nano-enabled drug delivery systems. Nano TransMed. 2024; 3: 100042. [DOI:10.1016/j.ntm.2024.100042]
2. Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY and Aldughaim MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles' physicochemical properties on responses in biological systems. Polymers. 2023; 15(7): 1596. [DOI:10.3390/polym15071596]
3. Abdel-Mageed HM, AbuelEzz NZ, Radwan RA and Mohamed SA. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J. Microencapsul. 2021; 38(6): 414-36. [DOI:10.1080/02652048.2021.1942275]
4. Saadh MJ, Hsu C-Y, Mustafa MA, Mutee AF, Kaur I, Ghildiyal P, Ali A-JA, Adil M, Ali MSh, Alsaikhan F, Narmani A, Farhood B. Advances in chitosan-based blends as potential drug delivery systems: a review. Int. J. Biol. Macromol. 2024; 273(Pt 1): 132916. [DOI:10.1016/j.ijbiomac.2024.132916]
5. Hu X, Zhang C, Xiong Y, Ma S, Sun C and Xu W. A review of recent advances in drug loading, mathematical modeling and applications of hydrogel drug delivery systems. J. Mater. Sci. 2024; 59(32): 15077-116. [DOI:10.1007/s10853-024-10103-x]
6. de Oliveira JL, da Silva MEX, Hotza D, Sayer C and Immich APS. Drug delivery systems for tissue engineering: exploring novel strategies for enhanced regeneration. J. Nanopart. Res. 2024; 26(7): 159. [DOI:10.1007/s11051-024-06074-4]
7. Iqbal M, Zafar N, Fessi H and Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015; 496(2): 173-90. [DOI:10.1016/j.ijpharm.2015.10.057]
8. Afshar M, Rezaei A, Eghbali S, Nasirizadeh S, Alemzadeh E, Alemzadeh E, Shadi M and Sedighi M. Nanomaterial strategies in wound healing: a comprehensive review of nanoparticles, nanofibres and nanosheets. Int. Wound J. 2024; 21(7): e14953. [DOI:10.1111/iwj.14953]
9. Naveenkumar R, Senthilvelan S and Karthikeyan B. A review on the recent developments in electrospinned nanofibers for drug delivery. Biomed. Mater. Devices. 2024; 2(1): 342-64. [DOI:10.1007/s44174-023-00121-9]
10. Gill AS, Sood M, Deol PK and Kaur IP. Synthetic polymer based electrospun scaffolds for wound healing applications. J. Drug Deliv. Sci. Technol. 2023; 89: 105054. [DOI:10.1016/j.jddst.2023.105054]
11. Chukaew S, Parivatphun T, Thonglam J, Khangkhamano M, Meesane J and Kokoo R. Biphasic scaffolds of polyvinyl alcohol/gelatin reinforced with polycaprolactone as biomedical materials supporting for bone augmentation based on anatomical mimicking; fabrication, characterization, physical and mechanical properties, and in vitro testing. J. Mech. Behav. Biomed. Mater. 2023; 143: 105933. [DOI:10.1016/j.jmbbm.2023.105933]
12. Teixeira MA, Amorim MTP and Felgueiras HP. Poly (vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers. 2020; 12(1): 7. [DOI:10.3390/polym12010007]
13. Mehdi-Sefiani H, Granados-Carrera CM, Romero A, Chicardi E, Domínguez-Robles J and Perez-Puyana VM. Chitosan-type-A-gelatin hydrogels used as potentialplatforms in tissue engineering for drug delivery. Gels. 2024; 10(7): 419. [DOI:10.3390/gels10070419]
14. Sasan S, Molavi AM, Moqadam KH, Farrokhi Nand Oroojalian F. Enhanced wound healing properties of biodegradable PCL/alginate core-shell nanofibers containing Salvia abrotanoides essential oil and ZnO nanoparticles. Int. J. Biol. Macromol. 2024; 279: 135152. [DOI:10.1016/j.ijbiomac.2024.135152]
15. Surana KR, Mahajan SK and Patil SJ. Coumarin: A valid scaffold in medicinal chemistry. J. Adv. Sci. Res. 2021; 12(03) (Suppl 1): 21-34. [DOI:10.55218/JASR.s1202112303]
16. Manjunatha B, Bodke YD, Nagaraja O, Lohith TN, Nagaraju G and Sridhar MA. Coumarin-benzothiazole based azo dyes: synthesis, characterization, computational, photophysical and biological studies. J. Mol. Struct. 2021; 1246: 131170. [DOI:10.1016/j.molstruc.2021.131170]
17. Borhani G, Mazandarani M and Abbaspour H. Antioxidant, antibacterial activity, ethnopharmacology, phytochemical in different extracts of Melilotus officinalis L. as an anti-infection and anti-diabetic in traditional uses of two northern provinces from Iran. Crescent. J. Med. Biol. Sci. 2024; 11(2): 83-91. [DOI:10.34172/cjmb.2024.3012]
18. Hashim FJ, Hussain SM and Shawkat MS. Separation, characterization and anticoagulant activity of Coumarin and its derivatives extracted from Melilotus officinalis. Biosci. Biotechnol. Res. Asia. 2017; 14(1): 13-23. [DOI:10.13005/bbra/2412]
19. Amiri Dehkharghani R, Zandi Doust M, Tavassoti Kheiri M and Hossein Shahi H. Impacts of chemical variables on the encapsulated corticoids in poly-ε-caprolactone nanoparticles and statistical biological analysis. Russ. J. Appl. Chem. 2018; 91: 1165-71. [DOI:10.1134/S1070427218070157]
20. Akhbarati R, Dehkharghani RA and Benisi SZ. Design a coordinated nano-platform for Coumarin-regulated delivery in line with the biological systems' growth phases. J. Polym. Environ. 2024; 33(2): 990-1005. [DOI:10.1007/s10924-024-03458-4]
21. Isola M, Colucci G, Diana A, Sin A, Tonani A and Maurino V. Thermal properties and decomposition products of modified cotton fibers by TGA, DSC, and Py-GC/MS. Polym. Degrad. Stab. 2024; 228: 110937. [DOI:10.1016/j.polymdegradstab.2024.110937]
22. Kontogiorgis CA and Hadjipavlou-Litina DJ. Synthesis and antiinflammatory activity of Coumarin derivatives. J. Med. Chem. 2005; 48(20): 6400-8. doi: 10.1021/jm0580149. [DOI:10.1021/jm0580149]
23. Chi HY, Chang NY, Li C, Chan V, Hsieh JH, Tsai Y-H and Lin T. Fabrication of gelatin nanofibers by electrospinning-mixture of gelatin and polyvinyl alcohol. Polymers. 2022; 14(13): 2610. [DOI:10.3390/polym14132610]
24. Fatima S, Mansha A, Asim S and Shahzad A. Absorption spectra of Coumarin and its derivatives. Chem. Pap. 2022; 76: 627-638. [DOI:10.1007/s11696-021-01902-6]
25. Kumar A, Jose R, Fujihara K, Wang J and Ramakrishna S. Structural and optical properties of electrospun TiO2 nanofibers. Chem. Mater. 2007; 19(26): 6536-42. [DOI:10.1021/cm702601t]
26. Cheng G, Kou T, Zhang J, Si C, Gao H and Zhang Z. O22-/O-functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy. 2017; 38: 155-66. [DOI:10.1016/j.nanoen.2017.05.043]
27. Hussain M, Khan SM, Shafiq M, Abbas N, Sajjad U and Hamid K. Advances in biodegradable materials: degradation mechanisms, mechanical properties, and biocompatibility for orthopedic applications. Heliyon. 2024; 10(12): e32713. [DOI:10.1016/j.heliyon.2024.e32713]
28. Yang D, Li Y and Nie J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr. Polym. 2007; 69(3): 538-43. [DOI:10.1016/j.carbpol.2007.01.008]
29. Linh NTB, Min YK, Song H-Y and Lee B-T. Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. J. Biomed. Mater. Res. B Appl. Biomater. 2010; 95(1): 184-91. [DOI:10.1002/jbm.b.31701]
30. Smith DA, Beaumont K, Maurer TS and Di L. Relevance of half-life in drug design: miniperspective. J. Med. Chem. 2018; 61(10): 4273-82. [DOI:10.1021/acs.jmedchem.7b00969]
31. Chen CJ, Liu JT, Chang S-J, Lee M-W and Tsai J-Z. Development of a portable impedance detection system for monitoring the growth of mouse L929 cells. J. Taiwan Inst. Chem. Eng. 2012; 43(5): 678-84. [DOI:10.1016/j.jtice.2012.04.008]
32. Hiep NT and Lee B-T. Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J. Mater. Sci. Mater. Med. 2010; 21: 1969-78. [DOI:10.1007/s10856-010-4048-y]
33. Glinos AD, Werrlein RJ. Density dependent regulation of growth in suspension cultures of L‐929 cells. J. Cell. Physiol. 1972; 79(1): 79-90. [DOI:10.1002/jcp.1040790109]
34. Sobhanian P, Khorram M, Hashemi S-S and Mohammadi A. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int. J. Biol. Macromol. 2019; 130: 977-87. [DOI:10.1016/j.ijbiomac.2019.03.045]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb