year 19, Issue 74 (6-2020)                   J. Med. Plants 2020, 19(74): 310-324 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zamani N, Heshmati M, Arbabi Bidgoli S. Genotoxicity assessment of Elaeagnus angustifolia L. fruit extract (senjed) nanocapsule by in vitro and in vivo methods. J. Med. Plants 2020; 19 (74) :310-324
URL: http://jmp.ir/article-1-2470-en.html
1- Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
2- Department of Cellular and Molecullar Sciences, Faculty of Sciences and Technology, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
3- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran , sepideharbabi@yahoo.com
Abstract:   (2663 Views)
Background: Although initial studies on Elaeagnus Angustifolia L. Fruit Extract (Senjed) Nanocapsule showed its efficacy in osteoporosis in rat model as well as its significant role in elevating the serum calcium levels, there is no study on its possible genotixic potentials which is necessary for developing all nanopharmaceuticals. Objective: This study aimed to evaluate the genotoxicity of Senjed nanocapsule using Ames and Micronucleus tests as two necessary steps for developing it as a new nanopharmaceutical. Methods: Salmonella typhimurium TA100 and TA98 strains were used for Mutagenicity and antimutagenicity assays by counting the number of colonies in the sample plates, negative and positive control plates. Micronucleus (MN) test was performed in male and female rats after oral administration of 1000 µg/kg/day of senjed nanocapsule and lymphocyte separation from the spleen of animals. Results: Observations from Ames test didn't indicate any mutagenic effect for this nanocapsule, moreover the anti-mutagenicity of the extract in both strains of salmonella typhimurium (P < 0.001) showed a concentration dependent antimutagenic properties of this nanocapsule in the presence of sodium Azide but in vivo micronucleus test showed a significant increase in the number of MN, Nucleoplasmic Bridges (NPB) and Nuclear Bud formation (NBUD) compared to the control group in both genders (P < 0.001). Conclusion: Based of the possible clinical values of this future nanopharmaceutical, it seems necessary to continue its in vivo genotoxicity assessments in lower doses after revising the composition of nanocarriers and before starting any clinical evaluation.
Full-Text [PDF 895 kb]   (1197 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2019/02/27 | Accepted: 2019/05/29 | Published: 2020/07/21

References
1. Hamidpour R, Hamidpour S, Hamidpour M, Shahlari M, Sohraby M, Shahlari N and Hamidpour R. Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. J. Trad. Comp. Med. 2017; 7: 24-9. [DOI:10.1016/j.jtcme.2015.09.004]
2. Niknam F, Azadi A, Barzegar A, Faridi P, Tanideh N and Zarshenas. Phytochemistry and phytotherapeutic aspects of Elaeagnus angustifolia L. Curr. Drug. Discov. Tech. 2016; 13 (4): 199-210. [DOI:10.2174/1570163813666160905115325]
3. Motevalian M, Shiri M, Shiri S, Shiri Z and Shiri H. Anti-inflammatory activity of elaeagnus angustifolia fruit extract on rat paw edema. J. Bas. Clin. Phys. Pharm. 2017; 28 (4): 377-81. [DOI:10.1515/jbcpp-2015-0154]
4. Nikniaz Z, Ostadrahimi A, Mahdavi R, Ebrahimi AA and Nikniaz L. Effects of Elaeagnus angustifolia L. supplementation on serum levels of inflammatory cytokines and matrix metalloproteinases in females with knee osteoarthritis. Comp. Ther. Med. 2014; 22 (5): 864-9. [DOI:10.1016/j.ctim.2014.07.004]
5. Chen XY, Han JX, Liu YS, Hajiakber A and Yuan T. Chemical constituents from traditional uighur herbal medicine elaeagnus angustifolia flowers. Zhon. Zhong. Yao. Za. Zhi. 2018; 43 (9): 1749-53.
6. Greque de Morais M, Greque de Morais E, Vaz Bda S, Gonçalves CF, Lisboa C and Costa JA. Nanoencapsulation of the bioactive compounds of spirulina with a microalgal Biopolymer Coating. J. Nanosci. Nanotech. 2016; 16 (1): 81-91. [DOI:10.1166/jnn.2016.10899]
7. Pinheiro AC, Bourbon AI, Cerqueira MA, Maricato E, Nunes C, Coimbra MA and Vicente AA. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbo. Poly. 2015; 115: 1-9. [DOI:10.1016/j.carbpol.2014.07.016]
8. Bapat P, Ghadi R, Chaudhari D, Katiyar SS and Jain S. Tocophersolan stabilized lipid nanocapsules with high drug loading to improve the permeability and oral bioavailability of curcumin. Int. J. Pharm. 2016; 16 (1): 81-91.
9. Amin DR, Higginson CJ, Korpusik AB, Gonthier AR and Messersmith PB. Untemplated resveratrol-mediated polydopamine nanocapsule formation. ACS App. Mate. Inter. 2018; 10 (40): 34792-801. [DOI:10.1021/acsami.8b14128]
10. Esmaeili A and Niknam S. Characterization of nanocapsules containing Elaeagnus angustifolia L. extract prepared using an emulsion-diffusion process. Flav. Frag. J. 2013; 28 (5): 309-15. [DOI:10.1002/ffj.3164]
11. Esmaeili A and Niknam S. 2014. Preparation of polyamide nanocapsules of Elaeagnus angustifolia L. delivery with in vivo studies. Ind. Cro. Pro. 2014; 55: 49-55. [DOI:10.1016/j.indcrop.2014.01.053]
12. Dusinska M, Mariussen E, Rundén-Pran E, Hudecova AM, Elje E, Kazimirova A, El Yamani N, Dommershausen N, Tharmann J, Fieblinger D, Herzberg F, Luch A and Haase A. In vitro approaches for assessing the genotoxicity of nanomaterials. nanot. 2019; protocol : 83-122. [DOI:10.1007/978-1-4939-8916-4_6]
13. Alebouyeh F, Bidgoli SA, Ziarati P, Heshmati M and Qomi M. Mutagenicity assessment of drinking water in combination with flavored black tea bags: a cross sectional study in tehran. As. Pac. J. Can. Prev. 2015; 16 (17): 7479-84. [DOI:10.7314/APJCP.2015.16.17.7479]
14. Speit G, Zeller J and Neuss S. The in vivo or ex vivo origin of micronuclei measured in human biomonitoring studies. Muta. 2011; 26 (1): 107-10. [DOI:10.1093/mutage/geq061]
15. Chen XY, Han JX, Liu YS, Hajiakber A and Yuan T. Chemical constituents from traditional Uighur herbal medicine elaeagnus angustifolia flowers. Zhongguo Zhong Yao Za Zhi. 2018; 9 (43): 1749-53.
16. Hosseinzadeh H, Ramezani M and Namjo N. Muscle relaxant activity of Elaeagnus angustifolia L. fruit seeds in mice. J. Ethnopharmacol. 2003; 84 (2 - 3): 275-8. [DOI:10.1016/S0378-8741(02)00331-8]
17. Dabbaghmanesh MH, Noorafshan A, Talezadeh P, Tanideh N, Koohpeyma F, Iraji A, Bakhshayeshkaram M and Montazeri-Najafabady N. Stereological investigation of the effect of Elaeagnus angustifolia fruit hydroalcoholic extract on osteoporosis in ovariectomized rats. Avicenna J. Phytomed. 2017; 7 (3): 261-74.
18. Amereh Z, Hatami N, Shirazi FH, Gholami S, Hosseini SH, Noubarani M, Kamalinejad M, Andalib S, Keyhanfar F and Eskandari MR. Cancer chemoprevention by oleaster (Elaeagnus angustifoli L.) fruit extract in a model of hepatocellular carcinoma induced by diethylnitrosamine in rats. EXCLI J. 2017; 16: 1046-56.
19. Okmen G, Turkcan O, Ceylan O and Gork G. The antimicrobial activity of liquidambar orientalis mill. against food pathogens and antioxidant capacity of leaf extracts. Afr. J. Tradit. Complement Altern. Med. 2004; 11 (5): 28-32. [DOI:10.4314/ajtcam.v11i5.4]
20. Du H, Chen J, Tian S, Gu H, Li N, Sun Y, Ru J and Wang J. Extraction optimization, preliminary characterization and immunological activities in vitro of polysaccharides from Elaeagnus angustifolia L. pulp. Carbohydr Polym. 2016; 151: 348-57. [DOI:10.1016/j.carbpol.2016.05.068]
21. Talaei-Khozani T, Vojdani Z, Dehghani F, Heidari E, Kharazinejad E and Panjehshahin MR. Toxic effects of Elaeagnus angustifolia fruit extract on chondrogenesis and osteogenesis in mouse limb buds. Tokai J. Exp. Clin. Med. 2011; 6 (3): 63-70.
22. Torbati M, Asnaashari S and Heshmati Afshar F. Essential oil from flowers and leaves of Elaeagnus angustifolia (Elaeagnaceae): composition, radical scavenging and general toxicity activities. Adv. Pharm. Bull. 6 (2): 163-9. [DOI:10.15171/apb.2016.023]
23. Luo T, Gao L, Chen X, Xu K and Niu M. Genotoxicity of nanocarriers. Curr. Drug Metab. 2018; 19 (2): 110-23. [DOI:10.2174/1389200218666171031122346]
24. George JM, Magogotya M, Vetten MA, Buys AV and Gulumian M. From the cover: an investigation of the genotoxicity and interference of gold nanoparticles in commonly used in vitro mutagenicity and genotoxicity assays. Toxicol. Sci. 2017; 156 (1): 149-66. [DOI:10.1093/toxsci/kfw247]
25. Dalcin AJF, Vizzotto BS, Bochi GV, Guarda NS, Nascimento K, Sagrillo MR, Moresco RN, Schuch AP, Ourique AF and Gomes P. Nanoencapsulation of the flavonoid dihydromyricetin protects against the genotoxicity and cytotoxicity induced by cationic nanocapsules. Colloids Surf B Biointerfaces 2019; 73: 798-805. [DOI:10.1016/j.colsurfb.2018.10.066]
26. Okmen G and Turkcan O. A study on antimicrobial, antioxidant and antimutagenic activities of Elaeagnus angustifolia L. leaves. Afr. J. Tradit. Complement. Altern. Med. 2013; 11 (1): 16-20. [DOI:10.4314/ajtcam.v11i1.17]
27. Heshmati M, ArbabiBidgoli S, Khoei S, Rezayat SM and Parivar K. Mutagenic effects of nanosilver consumer products: a new approach to physicochemical properties. Iran. J. Pharm Res. 2015; 14 (4): 1171-80.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb