year 19, Issue 74 (6-2020)                   J. Med. Plants 2020, 19(74): 1-24 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiri S, Fotovat R, Panahi B, Tarinezhad A, Mohammadi S A. Review of abiotic and biotic elicitors’ roles in secondary metabolites biosynthesis of periwinkle (Catharanthus roseus (Linn.) G. Don). J. Med. Plants 2020; 19 (74) :1-24
URL: http://jmp.ir/article-1-2416-en.html
1- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Zanjan University, Zanjan, Iran
2- Department of Genomics, Branch for West and Northwest Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Education and Extension Organization (AREEO), Tabriz, Iran , b.panahi@abrii.ac.ir
3- Department of Agronomy and and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
4- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Abstract:   (6511 Views)
Background: Based on recent statistical survey, the cancer is the third important factor in Iran mortality. Vinblastine and vincristine alkaloids are dominantly biosynthesized in the aerial parts of periwinkle, broadly applied for cancer treatment. Therefore, over production of these alkaloids by using the biotechnological approaches is inevitable. Since the terpenoid indole alkaloids (TIAS) biosynthesis pathway is adjustable, modification of underlying substrate and enzymes concentration by biotic and abiotic elicitors are important approaches for overproduction of these metabolites. Abiotic and biotic are induced the immune systems of periwinkle and subsequently increased the biosynthesis and accumulation of vinblastine and vincristine. Objective : In this study, we reviewed and discussed the impacts of different abiotic and biotic elicitors on TIAS biosynthesis and consequent secondary metabolites over production. Methods: In current study, using related keywords, eligible papers were identified using  search motors such as Google and Scopus.  Results: Our study indicated that biotic and abiotic elicitors are versatile tools for over-production of valuable metabolites in periwinkle. Conclusion: Based on our knowledge this is the first study on the reviewing of the different elicitors on vinblastine and vincristine and it will be more helpful in the future studies.
Full-Text [PDF 956 kb]   (4396 Downloads)    
Type of Study: Review | Subject: Agriculture & Ethnobotany
Received: 2019/01/6 | Accepted: 2019/08/13 | Published: 2020/07/21

References
1. Kohler LN, Garcia DO and Harris RB. Adherence to diet and physical activity cancer prevention guide lines and cancer outcomes: a systematic review. Cancer Epidemiol Biomarkers Prev. 2016; 25: 1018-28. [DOI:10.1158/1055-9965.EPI-16-0121]
2. Abad M, Gangy R, Sharifian E, Nikdel R, Jafarzadeh M and Jafarzadeh F. Epidemiologic distribution of cancer in a 10-year study: Retrospective review of hospital records and pathology centers of North Khorasan Province from 2003 to 2012. J. North Khorasan Uni. 2014; 6 (4): 689-96. [DOI:10.29252/jnkums.6.4.689]
3. Zeinalzadeh AH, Kousha A, Abdullahi L and Golzari MN. Pattern of Age Distribution of Different Cancers in East Azerbaijan province. J. Kerman University of Medical Sci. 2012; 19 (3): 308-16 (In Persian). [DOI:10.1258/jms.2012.012024]
4. Dugede Bernonville T, Clastre M, Besseau S, Oudin A, Burlat V, Glévarec G, Lanoue A, Papon N, El-Sayed M. and Verpoorte R. Growth, metabolic profiling and enzymes activities of Catharanthus roseus seedlings treated with plant growth regulators. Plant Growth Regul. 2004; 44: 53-8. [DOI:10.1007/s10725-004-2604-5]
5. Alam MM, Naeem M, Khan MMA and Uddin M. Vincristine and vinblastine anticancer catharanthus alkaloids: pharmacological applications and strategies for yield improvement. Catharanthus roseus (eBook). 2017, pp: 277-307. [DOI:10.1007/978-3-319-51620-2_11]
6. Amiri S, Fotovat R, Tarinejad A, Panahi B, Mohammadi S.. In vitro regeneration of periwinkle (Catharanthus roseus L.) and fidelity analysis of regenerated plants with ISSR Markers. J. Plant Physiology & Breeding. 2019; 9(1): 129-135.
7. Chen Q, Lu X, Guo X, Guo Q and Li D. Metabolomics characterization of two apocynaceae plants, Catharanthus roseus and Vinca minor, using GC-MS and LC-MS methods in combination. Molecules 2017; 22: 997-105. [DOI:10.3390/molecules22060997]
8. Sain M and Sharma V. Catharanthus roseus (An anti-cancerous drug yielding plant). A review of Potential therapeutic properties. Int. J. Pure App. Biosci. 2013; 1: 139-42.
9. Hedhili S, Courdavault V, Giglioli-Guivarc'h N, Gantet P. Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochem. Rev. 2007; 6: 341-51. [DOI:10.1007/s11101-006-9021-5]
10. Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, DesRochers A, Paré D, Jackson BG and Baldy V. Plant secondary metabolites: a key driver of litter decomposition and soinutrient cyclin. J. Ecol. 2016; 104 (6): 1527-41. [DOI:10.1111/1365-2745.12644]
11. Mujib A, Ilah A, Aslam J, Fatima S, Siddiqui ZH and Maqsood M. Catharanthus roseus alkaloids: application of biotechnology for improving yield. Plant Growth Regul. 2012; 68: 111-27. [DOI:10.1007/s10725-012-9704-4]
12. Verma P, Mathur AJ, Khan Sh.A, Verma N and Sharma A. Transgenic studies for modulating terpenoid indole alkaloids pathway in Catharanthus roseus: present status and future options. Phytochem. Rev. 2017; 16 (1): 19-54. DOI 10.1007/s11101-015-9447-8. [DOI:10.1007/s11101-015-9447-8]
13. Zhao J, Davis LC and Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005; 23 (4): 283-333. [DOI:10.1016/j.biotechadv.2005.01.003]
14. Montiel G, Zarei A, Körbes AP and Memelink J. The jasmonate-responsive element from the ORCA3 promoter from Catharanthus roseus is active in Arabidopsis and is controlled by the transcription factor AtMYC2. Plant Cell Physiol. 2011; 52: 578-87. [DOI:10.1093/pcp/pcr016]
15. Yamamoto K, Takahashi K, Mizuno H and Anegawa A. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS. PNAS. 2016; 113 (14): 3891-3896. [DOI:10.1073/pnas.1521959113]
16. Roepke J, Salim V, Wu M and Thamm AK. Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Natl Acad Sci USA. 2010; 107 (34): 15287-15292. [DOI:10.1073/pnas.0911451107]
17. El-Sayed M and Verpoorte R. Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem. Reviews 2007; 6: 277-305. [DOI:10.1007/s11101-006-9047-8]
18. Wesołowska A, Grzeszczuk M, Wilas J and Kulpa D. Gas chromatography-mass spectrometry (GC-MS) analysis of indole alkaloids isolated from catharanthus roseus (L.) G. Don cultivated conventionally and derived from in vitro cultures. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2016; 44 (1): 100-106. [DOI:10.15835/nbha44110127]
19. Moerkercke V, A1, Fabris M, Pollier J, Baart GJ, Rombauts S, Hasnain G, Rischer H, Memelink J, Oksman-Caldentey KM, Goossens A. CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. Plant Cell Physiol. 2013; 54 (5): 673-85. [DOI:10.1093/pcp/pct039]
20. Oudin A, Courtois M, Rideau M and Clastre M. The iriDOId pathway in Catharanthus roseus alkaloid biosynthesis. Phytochemistry Reviews 2007; 6 (2): 259-76. [DOI:10.1007/s11101-006-9054-9]
21. De Bernonville TD, Foureau E, Parage C, Lanoue A, Clastre M, Londono MA, Oudin A, Houillé B, Papon N, Besseau S and Glévarec G. Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics 2015; D 16 (1): 619. [DOI:10.1186/s12864-015-1678-y]
22. Kumar A, Prakash K, Sinha RK and Kumar N. In vitro plant propagation of Catharanthus roseus and assessment of genetic fidelity of micropropagated plants by RAPD marker assay. Appl. Biochem. Biotechnol. 2013; 169 (3): 894-900. [DOI:10.1007/s12010-012-0010-4]
23. Aslam J, Haque Khan S and Siddiqui Z.H. Catharanthus roseus (L.) G. Don. an important drug: its applications and production. Pharmacie Globale. 2010; 4: 1-16.
24. Campos Tamayo F, Dominguez EH and Vazquez Flota F. Vindoline formation in shoot culture of Catharanthus roseus is synchronously activated with morphogenesis through the last biosynthetic step. Ann. Bot. 2008; 102: 409-15. [DOI:10.1093/aob/mcn108]
25. Ataei-Azimi A, Delnavaz Hashemloian B, Ebrahimzadeh H and Majd A. High in vitro production of ant-canceric indole alkaloids from Periwinkle (Catharanthus roseus) tissue culture. Afr. J. Biotechnol. 2008; 7: 2834-9.
26. Abdel-Rahman TM, Kapiel TYS, Ibrahiem DM. Elicitation of alkaloids by biotic and abiotic stress factors in Catharanthus roseus. Egypt. J. Bot. 2010; 54: 207-24.
27. Taha HS, El- Bahr MK and Seif El Nasr MM. In vitro studies on egyptian Catharanthus roseus (L.) G.Don. IV: manipulation of some amino acids as precursors for enhanced of indole alkaloids production in suspension cultures. Aust. J. Basic Appl. Sci. 2009; 3: 3137-44.
28. Whitmer S, Van Der Heijden R and Verpoorte R. Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J. Biotech. 2002; 96: 193-203. [DOI:10.1016/S0168-1656(02)00027-5]
29. Zhao J, Zhu WH and Hu Q. Effects of light and plant growth regulators on the biosynthesis of vindoline and other indole alkaloids in Catharanthus roseus callus cultures. Plant Growth Regl. 2001; 33: 43-9. [DOI:10.1023/A:1010722925013]
30. Khataee E, Karimi F and Razavi K. Chromium-induced alkaloid production in Catharanthus roseus (L.) G. Don in vitro cultured shoots and related gene expression patterns particularly for the novel gene GS. Acta agriculturae Slovenica. 2019; 113 (1): 95-108. [DOI:10.14720/aas.2019.113.1.09]
31. Zhan A, Huang X and Li S. Genome-wide identification and evaluation of new reference genes for gene expression analysis under temperature and salinity stresses in Ciona savignyi. Frontiers in Genetics 2019; 10: 71. [DOI:10.3389/fgene.2019.00071]
32. Panahi B, Abbaszadeh B, Taghizadeghan M and Ebrahimi E. Genome-wide survey of Alternative Splicing in Sorghum. Bicolor. Physiol. Mol. Plant. 2014; 20 (3): 323-9. [DOI:10.1007/s12298-014-0245-3]
33. Panahi B, Mohammadi SA, Khaksefidi Ebrahmi R, Mehrabadi Fallah J and Ebrahimie E. Genome-wide analysis of alternative splicing events in Hordeum vulgare: highlighting retention of intron-based splicing and its possible function through network analysis. FEBS Lett. 2015; 589: 3564-75. [DOI:10.1016/j.febslet.2015.09.023]
34. Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ and Chen XY. Transcriptional regulation of plant secondary metabolism. J. Integr. Plant Biol. 2012; 54: 703-12. [DOI:10.1111/j.1744-7909.2012.01161.x]
35. Panahi B, Shahriari Ahmadi F, Marashi H, Zare M and Moshtaghi N. Molecular cloning and expression analysis of Na+/H+ antiporter in monocot halophyte Leptochloa fusca L. NJAS-Wageningen J. Life Sci. 2013; 65: 87-93. [DOI:10.1016/j.njas.2013.05.002]
36. Kumar P, Chaturvedi R, Sundar D, Bisaria V. Piriformospora indica enhances the production of pentacyclic triterpenoids in Lantana camara L. suspension cultures. Plant. Cell. Tiss. Org. Cult. (PCTOC). 2016; 125: 23-9. [DOI:10.1007/s11240-015-0924-y]
37. Panahi B, Moshtaghi N, Torktaz I, panahi A and Roy S. Homology Modeling and Structural Analysis of NHX Antiporter of Leptochloa Fusca (L.). J. Proteomics Bioinform. 2012; 5: 214-6. [DOI:10.4172/jpb.1000238]
38. Nakabayashi R and Saito K. Integrated metabolomics for abiotic stress responses in plants. Curr. Opin. Plant. Biol. 2015; 24: 10-6. [DOI:10.1016/j.pbi.2015.01.003]
39. Papon N, Bremer J, Vansiri A, Andreu F, Rideau M and Crèche J. Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med. 2005; 71: 572-84. [DOI:10.1055/s-2005-864163]
40. Amini A, Glevarec G, Andreu F, Rideau M and Creche J. Low levels of gibberellic acid control the biosynthesis of ajmalicine in Catharanthus roseus cell suspension cultures. Planta Med. 2009; 75: 187-91. [DOI:10.1055/s-0028-1112198]
41. Yahia A, Kevers C, Gaspar T, Chenieux J, Rideau M and Creche J. Cytokinins and ethylene stimulate indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus by two distinct mechanisms. Plant Sci. 1998; 133: 9-15. [DOI:10.1016/S0168-9452(98)00014-4]
42. El-Sayed M and Verpoorte R. Growth, metabolic profiling and enzymes activities of Catharanthus roseus seedlings treated with plant growth regulators. Plant Growth Regul. 2004; 44: 53-8. [DOI:10.1007/s10725-004-2604-5]
43. Shabani M, Farsi M and Mirshamsi Kakhki A. Evaluation of ethylene effect on expression level of T16H, G10H, DAT and AVLBS genes in Catharanthus roseus. Mod. Gen. J. 2014; 9 (2): 151-60 (In Persian).
44. Amiri S, Fotovat R, Tarinejhad AR, Panahi B, and Mohammadi SA. Optimization of Hormonal Combinations for In Vitro Regeneration of Lesser Periwinkle (Vinca minor L.) and Assessment of Genetic Homogeneity. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2019; 1-7. [DOI:10.1007/s40011-019-01141-6]
45. Sottomayor M, Duarte P, Figueiredo R and Barcelã AR. A Vacuolar class III peroxidase and the metabolism of anticancer indole alkaloids in Catharanthus roseus. Plant Signaling Behav. 2008; 3: 899-901. [DOI:10.4161/psb.3.10.6576]
46. Wang L, Nägele T, Doerfler H, Fragner L, Chaturvedi, P, Nukarinen E, Bellaire A, Huber W, Weiszmann J and Engelmeier D. System level analysis of cacao seed ripening reveals a sequential interplay of primary and secondary metabolism leading to polyphenol accumulation and preparation of stress resistance. Plant. J. 2016; 87: 318-32. [DOI:10.1111/tpj.13201]
47. Kawano T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 2003; 21 (9): 829-37. [DOI:10.1007/s00299-003-0591-z]
48. Jaggi M, Kumar S and Sinha AK. Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl. Microbiol. Biotechnol. 2011; 90 (3): 1005-16. [DOI:10.1007/s00253-011-3131-8]
49. Li S, Zhang P, Zhang M. Functional analysis of a WRKY transcription factor involved in transcriptional activation of the DBAT gene in Taxus chinensis. Plant Biol. 2013; 15: 19-26. [DOI:10.1111/j.1438-8677.2012.00611.x]
50. Pan Q, Rianika Mustafa N, Tang K and Young H. Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochemistry Rev. 2016; 15: 221-50. [DOI:10.1007/s11101-015-9406-4]
51. Pan Y, Liu J, Guo XR, Zu YG and Tang ZH. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus. Protoplasma. 2015; 252: 813-24. [DOI:10.1007/s00709-014-0718-9]
52. Chen Q, Lu X, Guo X, Pan Y, Yu B, Tang Z and Guo Q. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Ecotoxicol Environ Saf. 2018; 157: 266-75. [DOI:10.1016/j.ecoenv.2018.03.055]
53. Pan Q, Wang C, Xiong Z, Wang H, Shen Q, Fu X, Peng B, Ma Y, Sun X and Tang K. CrERF5, an AP2/ERF transcription factor, positively regulates the biosynthesis of bisindole alkaloids and their precursors in Catharanthus roseus. Front Plant Sci. 2019; 10: 931. [DOI:10.3389/fpls.2019.00931]
54. Pan Q, Wang Q and Yuan F. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 2012; 7: e43038. [DOI:10.1371/journal.pone.0043038]
55. Peebles CAM, Hughes EH and Shanks JV. Transcriptional response of the terpenoid indole alkaloid pathway to the over expression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseu hairy roots over time. Metab. Eng. 2009; 11: 76-86. [DOI:10.1016/j.ymben.2008.09.002]
56. Schluttenhofer C, Pattanaik S and Patra B. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling. BMC Genomics 2014; 15: 502-22. [DOI:10.1186/1471-2164-15-502]
57. Rajeshwari V and Bhuvaneshwari V. Salicylic acid induced salt stress tolerance in plants. Int. J. Plant. Sci. 2017; 5 (3): 1067-78.
58. Khandan-Mirkohi A, Khalili Halbi M, Salami SA and Lesani H. Improving Effects of Mild Cold Stress and Salicylic acid on Growth and Physiology of Periwinkle (Catharanthus roseus Don.). Inter. J. Hort. Sci. Tech. 2017; 4 (1): 67-78.
59. Yu F and De Luca V. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc. Natl. Acad. Sci. USA. 2013; 24: 110-39. [DOI:10.1073/pnas.1307504110]
60. Montiel G, Zarei A, Körbes AP and Memelink J. The jasmonate-responsive element from the ORCA3 promoter from Catharanthus roseus is active in Arabidopsis and is controlled by the transcription factor AtMYC2. Plant Cell Physiol. 2011; 52: 578-87. [DOI:10.1093/pcp/pcr016]
61. Achnine L, Huhman, DV, Farag MA, Sumner LW, Blount JW and Dixon RA. Genomics-based selection and functional characterization of triterpene glycosyl transferases from the model legume Medicago truncatula. Plant J. 2005; 41: 875-87. [DOI:10.1111/j.1365-313X.2005.02344.x]
62. Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ and Dixon RA. Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proceedings of the National Academy of Sciences of the United. 2007; 104: 17909-15. [DOI:10.1073/pnas.0708697104]
63. Wei S. Methyl jasmonic acid induced expression pattern of terpenoid indole alkaloid pathway genes in Catharanthus roseus seedlings. Plant Growth Regul. 2010; 61: 243-51. [DOI:10.1007/s10725-010-9468-7]
64. Tang Z, Rao L, Peng G, Zhou M, Shi G and Liang Y. Effects of endophytic fungus and its elicitors on cell status and alkaloid synthesis in cell suspension cultures of Catharanthus roseus. J. Med. Plants Res. 2011; 5: 2192-200.
65. Ruiz-May E, De-la-Pena C, Galaz-Avalos M, Lei Z and Bonnie S. Methyl jasmonate induces ATP biosynthesis deficiency and accumulation of proteins related to secondary metabolism in Catharanthus roseus (L.) G. hairy roots. Plant Cell Physiol. 2011; 52 (8): 1401-21. [DOI:10.1093/pcp/pcr086]
66. Pan Q, Chen Y, Wang Q, Yuan F and Xing S. Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regul. 2010; 60 (2): 133-41. [DOI:10.1007/s10725-009-9429-1]
67. Afrin A, Huang JJ and Luo ZU. JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci. Bull. 2015; 60 (12): 1062-72. [DOI:10.1007/s11434-015-0813-0]
68. Kumar SR, Shilpashree HB and Nagegowda DA. Terpene moiety enhancement by overexpression of geranyl (geranyl) diphosphate synthase and geraniol synthase elevates monomeric and dimeric monoterpene indole alkaloids in transgenic catharanthus roseus. Frontiers in Plant Sci. 2018; 9: 942. [DOI:10.3389/fpls.2018.00942]
69. Liu Y, Zhao D, Zu Y, Tang Z, Zhang Z and Jiang Y. Effects of low light on terpenoid indole alkaloid accumulation and related biosynthetic pathway gene expression in leaves of Catharanthus roseus seedlings. Bot. Studies 2011; 52: 191-201.
70. Mokhaberi A, Ahmadi J and Mafakheri S. The expression profile of D4H and DAT genes in Catharanthus roseus in response to drought, salinity and salicylic acid. Iran J. Gene. Plant Breeding. 2013; 2 (2): 38-46.
71. She J, Yan H, Yang J, Xu W and Su Z. CroFGD: Catharanthus roseus Functional Genomics Database. Front Genet. 2019; 10: 238. [DOI:10.3389/fgene.2019.00238]
72. Liu X, Zheng Y, Wang-Pruski G, Gan Y, Zhang B, Hu Q and Du Y. Transcriptome profiling of periwinkle infected with Huanglongbing ('Candidatus Liberibacter asiaticus'). Eur. J. Plant Pathol. 2019; 153 (3): 891-906. [DOI:10.1007/s10658-018-01607-9]
73. Gongora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M, Mandadi KK, Nims E, Runguphan W, Vaillancourt B and Varbanova-Herde M. Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PloS One. 2012; 7 (12): e52506. [DOI:10.1371/journal.pone.0052506]
74. Singh SK, Srivastava P, Singh BR and Khan JA. Production of phytoplasma-free plants from yellow leaf diseased Catharanthus roseus L. (G.) Don. J. Plant Diseases and Protection. 2007; 114 (1): 2-5. [DOI:10.1007/BF03356195]
75. Abraham F, Bhatt A, Keng CL and Indrayanto G. Sulaiman SF. Effect of yeast extract and chitosan on shoot proliferation, morphology and antioxidant activity of Curcuma mangga in vitro plantlets. Afri. J. Biote. 2011; 10: 7787-95. [DOI:10.5897/AJB10.1261]
76. Vasconsuelo A and Boland R. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci. 2007; 172: 861-75. [DOI:10.1016/j.plantsci.2007.01.006]
77. Kumar A, Patil D, Rajamohanan PR and Ahmad A. Isolation purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PloS One. 2013; e71805. [DOI:10.1371/journal.pone.0071805]
78. Tan RX and Zou WX. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 2001; 18: 448-59. [DOI:10.1039/b100918o]
79. Pauw B, Hilliou FAO, Martinm VS, Chatel G, Wolf CJF, Champion A, Pre M, Duijn BV, Kijne JW, Van der Fits L and Memelink J. Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J. Biol. Chem. 2004; 279: 52940-8. [DOI:10.1074/jbc.M404391200]
80. Moreno PRH, Poulsen C, Van der Heijden R and Verpoorte R. Effects of elicitation on different secondary metabolic pathways in Catharanthus roseus cell suspension cultures. Enzyme Microb. Technol. 1996; 18: 99-107. [DOI:10.1016/0141-0229(95)00078-X]
81. Tonk D, Mujib A, Maqsood M, Ali M and Zafar N. Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus. Plant Cell, Tissue and Organ Cul (PCTOC). 2016; 126 (2): 291-303. [DOI:10.1007/s11240-016-0998-1]
82. Dipti T, Mujib A, Maqsood M, Ali M and Zafar NA. Aspergillus flavus fungus elic-itation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus. Plant Cell Tissue Organ. Cult. 2016; 126: 291-303. [DOI:10.1007/s11240-016-0998-1]
83. Namdeo A. Plant cell elicitation for production of secondary metabolites. Phcog Rev. (A review). 2007; 1: 320-45.
84. Cheng XY, Guo B, Zhou HY, Ni W and Liu CZ. Repeated elicitation enhances phenylethanpoid glycosides accumulation in cell suspension cultures of Cistanche deserticola. Bioch. Eng. J. 2005; 24: 203-7. [DOI:10.1016/j.bej.2005.02.013]
85. Ahlawat S, Saxena P, Ali A and Abdin M. Piriformospora indica elicitation of withaferin A biosynthesis and biomass accumulation in cell suspension cultures of Withania somnifera. Symbiosis. 2016; 69: 37-46. [DOI:10.1007/s13199-015-0364-9]
86. Memelink J, Verpoorte R and Kijne JW. ORCAnisation of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci. 2001; 6: 212-9. [DOI:10.1016/S1360-1385(01)01924-0]
87. Maqsood M and Mujib A. Yeast extract elicitation increases vinblastine and vincristine yield inprotoplast derived tissues and plantlets in Catharanthus roseus. Braz. J. Pharm. Sci. 2017; [DOI:10.1016/j.bjp.2017.05.008]
88. Ramezani A, Haddada, R, Sedaghati, B, Jafari, D. Effects of fungal extracts on vinblastine and vincristine production and their biosynthesis pathway genes in Catharanthus roseus. S. Afr. J. Bot. 2018; 119: 163-71. [DOI:10.1016/j.sajb.2018.08.015]
89. Abdel-Rahman TM, Kapiel TYS, Ibrahiem DM and Ali EAM. Elicitation of alkaloids by biotic and abiotic stress factors in Catharanthus roseus. Egypt. J. Bot. 2010; 27: 207-24.
90. Zho J, Zhu WH and Hu Q. Enhanced ajmalicine production in Catharanthus roseus cell cultures by combined elicitor treatment: from shake-flask to 20 airlift bioreactor. Biotech. Letters 2000; 22 (6): 509-14.
91. Idrees M, Naeem M, Aftab T and Khan MMA. Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle (Catharanthus roseus (L.) G. Don). Acta Physiol. Plant. 2011; 33: 987-99. [DOI:10.1007/s11738-010-0631-6]
92. Alam MM, Naeem M, Idrees M, Khan MMA. Augmentation of photosynthesis, crop productivity, enzyme activities and alkaloids production in Sadabahar (Catharanthus roseus L.) through application of diverse plant growth regulators. J. Crop. Sci. Biotech. 2012; 15: 117-29. [DOI:10.1007/s12892-011-0005-7]
93. Alam MM. Influence of GA3, epibrassinolide and kinetin on the performance of Catharanthus roseus L. with special reference to alkaloid production. PhD Thesis, AMU, Aligarh, India (2013).
94. Srivastava NK and Srivastava AK. Influence of gibberellic acid on 14CO2 metabolism, growth, and production of alkaloids in Catharanthus roseus. Photosynthetica. 2007; 45: 156-60. [DOI:10.1007/s11099-007-0026-0]
95. Khataee E, Karimi F and Razavi Kh. Chromium-induced alkaloid production in Catharanthus roseus (L.) G. Don in vitro cultured shoots and related gene expression patterns particularly for the novel gene GS. Acta Agriculturae Slovenica. 2019; 113: 95-108. [DOI:10.14720/aas.2019.113.1.09]
96. Rai V, Tandon PK and Khatoon S. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: vincristine and vinblastine. BioMed Research International. 2014; [DOI:10.1155/2014/934182]
97. Srivastava NK and Srivastava AK. Influence of some heavy metals on growth alkaloid content and composition in Catharanthus roseus L. Indian J. Pharma. Sci. 2010; 72: 775-8. [DOI:10.4103/0250-474X.84592]
98. Alam MM, Naeem M, Khan MMA. Exploiting the epibrassinolide as a plant growth promoter for augmenting the growth, physiological activities and alkaloids production in Catharanthus roseus L. J. Med. Plants. Stud. 2016; 4: 88-93.
99. Namdeo A, Patil S and Fulzele DP. Influence of fungal elicitors on production of ajamalicine by cell cultures of Catharanthus roseus. Biotechnol. Prog. 2002; 18 (1): 159-62. [DOI:10.1021/bp0101280]
100. Samar F, Mujib A and Dipti T. NaCl amendment improves vinblastine and vincristine synthesis in Catharanthus roseus: a case of stress signaling as evidenced by antioxidant enzymes activities. Plant Cell, Tissue and Organ Cul. 2015; 121: 445-58. [DOI:10.1007/s11240-015-0715-5]
101. Smith JI, Smart NJ, Misawa M, Kurg WG, Tallevi SG and Dicosmo F. Increased accumulation of indole alkaloids by some lines of Catharanthus roseus in response to addition of vanadyl sulphate. Plant Cell Reports 1987; 6: 142-5.
102. Huang KS, Yang CH, Wang YC, Wang WT and Lu YY. Microfluidic synthesis of vinblastine-loaded multifunctional particles for magnetically responsive controlled drug release. Pharmaceutics 2019; 11 (5): 212. DOI: 10.3390/pharmaceutics11050212. [DOI:10.3390/pharmaceutics11050212]
103. Marslin S, Siram G and Maqbool K. secondary Metabolites in the green synthesis of metallic nanoparticles. Materials (Basel). 2018; 11 (6): 940. DOI: 10.3390/ma11060940. [DOI:10.3390/ma11060940]
104. Boxi S. Mukherjee S and Paria S. (2016). Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnol. 27:085103. [DOI:10.1088/0957-4484/27/8/085103]
105. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G and Bartolucci C. Nanotechnology in agriculture: which innovation potential does it have? Front. Environ. Sci. 2016; 4: 20. [DOI:10.3389/fenvs.2016.00020]
106. Fouad AS and Hafez RM. Effect of cobalt nanoparticles and cobalt ions on alkaloids production and expression of CrMPK3 gene in Catharanthus roseus suspension cultures. Cell Mol. Biol (Noisy-le-grand). 2018; 64: 12-13. [DOI:10.14715/cmb/2018.64.12.13]
107. Sharma A, Verma P, Mathur A and Mathur AK. Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Protoplasma. 2018; 255 (1): 425-35. [DOI:10.1007/s00709-017-1151-7]
108. Ramani S and Jayabaskaran C. Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. J. Mol. Signal. 2008; 25 (3): 9-18. [DOI:10.1186/1750-2187-3-9]
109. Das K and Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014. https://DOI.org/10.3389/fenvs.2014.00053. [DOI:10.3389/fenvs.2014.00053]
110. Idrees M, Hassan AU, Naeem M, Ali A, Aftab T and Masroor M, Khan A. The accumulation and degradation of alkaloids in Catharanthus roseus supported by various external agents under different environmen conditions. Catharanthus roseus (eBook). 2017; DOI 10.1007/978-3-319-51620-2_13. [DOI:10.1007/978-3-319-51620-2_13]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb