year 18, Issue 72 And S12 (Supplement 12 2019)                   J. Med. Plants 2019, 18(72 And S12): 288-298 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirabdollahi Shamsi F, Najjari R, Moradi A, Safari F. Ameliorating of Transcription Level of gp91Phox and P22Phox Subunits of NADPH Oxdisae Complex in Hypertrophied Heart of Rats by Resveratrol. J. Med. Plants 2019; 18 (72) :288-298
URL: http://jmp.ir/article-1-2405-en.html
1- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2- Department of Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3- Biotechnology Research Center, International Campus, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran , f.safari@ssu.ac.ir
Abstract:   (3758 Views)
Background: Hypertension induced-left ventricular hypertrophy (LVH) is, at least initially, an adaptive response of the heart to pressure overload but it leads to heart failure if left untreated. Over-activity of reactive oxygen species generator, NADPH oxidase enzyme, is intricately linked with LVH progression.
Objective: The aim of the present study was to investigate the effect of, natural polyphenole, resveratrol on transcription level of NADPH oxidase subunits (gp91Phox, P22Phox, P67Phox, P47Phox and Rac1) in hypertrophied heart of rats.
Method: Male Wistar rats were divided into the following groups: control (intact animal); sham (DMSO+H), untreated hypertrophy (H) and resveratrol-treated hypertrophy (R+H) groups. LVH was induced by abdominal aortic banding. Blood pressure was measured directly through carotid artery cannulation. Gene expression was evaluated using real time RT-PCR technique.
Results: The animals in H group had higher systolic (SBP) and diastolic blood pressure (DBP) compared with control (P <0.001). In treated group (R+H) SBP and DBP were decreased significantly in comparison with H group (P <0.001). In H group, cardiac mRNA levels of gp91Phox, P22Phox, P67Phox and Rac1 subunits levels were upregulated by 98.4 ± 14.5%, 64.7 ± 8.8%, 36.4 ± 5% and 73.2 ± 10.8% ,respectively (P < 0.001, P < 0.001, P < 0.05 and P < 0.001, respectively vs. control). However in R+H group gp91Phox, P22Phox and Rac1 mRNA levels were 43.2 ± 4.5%, 28.6 ± 5.7% and 30.5 ± 5.8% which showed a significant difference compared with H group (P < 0.01, P < 0.05 and P < 0.05, respectively).
Conclusion: Transcription level of NADPH oxidase subunits increases in hypertrophied heart. Resveratrol protects the heart against pressure overload-induced LVH partly through downregulation of NADPH oxidase subunits.
Full-Text [PDF 467 kb]   (1420 Downloads)    
Type of Study: Research | Subject: Pharmacology & Toxicology
Received: 2018/12/27 | Accepted: 2019/03/16 | Published: 2020/03/7

References
1. Morisco C, Sadoshima J, Trimarco B, Arora R, Vatner DE and Vatner SF. Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. American Journal of Physiology-Heart and Circulatory Physiol. 2003; 284 (4): H1043-H7. [DOI:10.1152/ajpheart.00990.2002]
2. Verdecchia P, Schillaci G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F and Porcellati C. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation. 1990; 81 (2): 528 - 36. [DOI:10.1161/01.CIR.81.2.528]
3. Bedard K and Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 2007; 87 (1): 245 - 313. [DOI:10.1152/physrev.00044.2005]
4. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004; 4 (3): 181 - 9. [DOI:10.1038/nri1312]
5. Babior BM. The respiratory burst oxidase. Curr. Opin. Hematol. 1995; 2: 55 - 60. [DOI:10.1097/00062752-199502010-00008]
6. BelAiba RS, Djordjevic T, Petry A, Diemer K, Bonello S, Banfi, B, Hess J, Pogrebniak A, Bickel C and Görlach A. NOX5 variants are functionally active in endothelial cells. Free Radical Biology & Medicine 2007; 42 (4): 446 - 59. [DOI:10.1016/j.freeradbiomed.2006.10.054]
7. Han HX and Zhang C. E242T polymorphism of NADPH oxidase P22Phox gene and ischemia cerebrovascular disease. 2004.
8. Lambeth JD, Cheng G, Arnold RS and Edens WA. Novel homologs of gp91 phox. Trends Biochem. Sci. 2000; 25: 459 - 61. [DOI:10.1016/S0968-0004(00)01658-3]
9. Li JM, Mullen AM, Yun S, Wientjes F, Brouns GY and Thrasher AJ. Essential role of the NADPH oxidase subunit p 47 (phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ. Res. 2002; 909: 143 - 50. [DOI:10.1161/hh0202.103615]
10. Gracia-Sancho J, Villarreal G, Zhang Y and García-Cardeña G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovascular Res. 2010; 85 (3): 514 - 9. [DOI:10.1093/cvr/cvp337]
11. Mashhadi FD, Reza JZ, Jamhiri M, Hafizi Z, Mehrjardi FZ and Safari F. The effect of resveratrol on angiotensin II levels and the rate of transcription of its receptors in the rat cardiac hypertrophy model. The J. Physiological Sciences 2017; 67 (2): 303 - 9. [DOI:10.1007/s12576-016-0465-0]
12. Seymour AM, Giles L, Ball V, Miller JJ, Clarke K, Carr CA and et al. In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc. Res. 2015; 106: 249 - 60. [DOI:10.1093/cvr/cvv101]
13. Gupta PK, DiPette DJ and Supowit SC. Protective effect of resveratrol against pressure overload‐induced heart failure. Food Science & Nutrition 2014; 2 (3): 218 - 29. [DOI:10.1002/fsn3.92]
14. Juric D, Wojciechowski P, Das DK and Netticadan T. Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. American J. Physiology-Heart and Circulatory Physiol. 2007; 292 (5): H2138 - H43. [DOI:10.1152/ajpheart.00852.2006]
15. Safari F, Zarei F, Shekarforoush S, Fekri A, Klishadi MS and Hekmatimoghaddam S. Combined 1, 25-Dihydroxy-vitamin D and Resveratrol: A Novel Therapeutic Approach to Ameliorate Ischemia Reperfusion-Induced Myocardial Injury. Int. J. Vitam. Nutr. Res. 2015; 85 (3 - 4): 174 - 84 [DOI:10.1024/0300-9831/a000236]
16. Mokni M, Hamlaoui S, Karkouch I, Amri M, Marzouki L, Limam F and Aouani E. Resveratrol Provides Cardioprotection after Ischemia/ reperfusion Injury via Modulation of Antioxidant Enzyme Activities. IJPR. 2013; 12 (4): 867 - 75.
17. Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA and Fiorillo C. SIRT1 modulates 67. MAPK pathways in ischemic-reperfused cardiomyocytes. CMLS. 2012; 69 (13): 2245 - 60. [DOI:10.1007/s00018-012-0925-5]
18. Wojciechowski P, Juric D, Louis XL, Thandapilly SJ, Yu L, Taylor C and Netticadan T. Resveratrol arrests and regresses the development of pressure overload- but not volume overload-induced cardiac hypertrophy in rats. JN. 2010; 140 (5): 962 - 8. [DOI:10.3945/jn.109.115006]
19. Juric D, Wojciechowski P, Das DK and Netticadan T. Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. American J. Physiology-Heart and Circulatory Physiol. 2007; 292 (5): H 2138 - H 43. [DOI:10.1152/ajpheart.00852.2006]
20. Liu Z, Song Y, Zhang X, Liu Z, Zhang W, Mao W, Wang W, Cui W, Zhang X, Jia X and Li N. Effects of trans‐resveratrol on hypertension‐induced cardiac hypertrophy using the partially nephrectomized rat model. Clinical and Experimental Pharmacology and Physiol. 2005; 32 (12): 1049 - 54. [DOI:10.1111/j.1440-1681.2005.04299.x]
21. Li JM, Gall NP, Grieve DJ, Chen M and Shah AM. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension. 2002; 40 (4): 477 - 84. [DOI:10.1161/01.HYP.0000032031.30374.32]
22. MacCarthy PA, Grieve DJ, Li JM, Dunster C, Kelly FJ and Shah AM. Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase. Circulation. 2001; 104 (24): 2967 - 4. [DOI:10.1161/hc4901.100382]
23. Bendall JK, Cave AC, Heymes C, Gall N and Shah AM. Pivotal role of a gp91phox‐containing NADPH oxidase in angiotensin II‐induced cardiac hypertrophy in mice. Circulation 2002; 105 (3): 293 - 6. [DOI:10.1161/hc0302.103712]
24. Chen JX, Zeng H, Tuo QH, Yu H, Meyrick B and Aschner JL. NADPH oxidase modulates myocardial Akt ERK1/2 activation and angiogenesis after hypoxia-reoxygenation. Amer. J. Physiol. Heart Circ. Physiol. 2007; 292 (4): 1664 - 74. [DOI:10.1152/ajpheart.01138.2006]
25. Landmesser U, Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S, Manes C, Schieffer B and Drexler H. Critical role of the NAD (P) H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circulation Res. 2007; 100 (6): 894 - 903. [DOI:10.1161/01.RES.0000261657.76299.ff]
26. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G and Shah AM. Increased myocardial NADPH oxidase activity in human heart failure. J. Am. Coll. Cardiol. 2003; 41 (12): 2164 - 71. [DOI:10.1016/S0735-1097(03)00471-6]
27. Li J, Zhu H, Shen E, Wan L, Arnold JMO and Peng T. Deficiency of Rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 2010; 59 (8): 2033 - 42. [DOI:10.2337/db09-1800]
28. Talukder MA, Elnakish MT, Yang F, Nishijima Y, Alhaj MA, Velayutham M, Hassanain HH and Zweier JL. Cardiomyocyte-specific overexpression of an active form of Rac predisposes the heart to increased myocardial stunning and ischemia-reperfusion injury. Am. J. Physiol. Heart. Circ. Physiol. 2013; 15: 304 (2): 294 - 302. [DOI:10.1152/ajpheart.00367.2012]
29. Elnakish MT, Awad MM, Hassona MD, Alhaj MA, Kulkarni A, Citro LA, Sayyid M, Abouelnaga ZA, El-Sayed O, Kuppusamy P, Moldovan L, Khan M and Hassanain HH. Cardiac remodeling caused by transgenic overexpression of a corn Rac gene. Am. J. Physiol. Heart Circ. Physiol. 2011; 301 (3): 868 - 80. [DOI:10.1152/ajpheart.00807.2010]
30. Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Hikoso S, Kashiwase K, Takeda T, Watanabe T, Mano T, Matsumura Y, Ueno H and Hori M. The small GTP-binding protein Rac1 induces cardiac myocyte hypertrophy through the activation of apoptosis signal-regulating kinase 1 and nuclear factor-kappa B. J. Biol. Chem. 2003; 278 (23): 20770 - 77. [DOI:10.1074/jbc.M213203200]
31. Morel E, Marcantoni A, Gastineau M, Birkedal R, Rochais F, Garnier A, Lompré AM, Vandecasteele G and Lezoualc'h F. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ. Res. 2005; 97 (12): 1296 - 304. [DOI:10.1161/01.RES.0000194325.31359.86]
32. Zhang H, Morgan B, Potter BJ, Ma L, Dellsperger KC, Ungvari Z and Zhang C. Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol. 2010; 299 (4): 985 - 94. [DOI:10.1152/ajpheart.00489.2010]
33. Zhang H, Zhang J, Ungvari Z and Zhang C. Resveratrol improves endothelial function: role of TNF {alpha} and vascular oxidative stress. Arterioscler. Thromb. Vasc. Biol. 2009; 29 (8): 1164 - 71. [DOI:10.1161/ATVBAHA.109.187146]
34. Guo R, Li W, Liu B, Li S, Zhang B and Xu Y. Resveratrol protects vascular smooth muscle cells against high glucose-induced oxidative stress and cell proliferation in vitro. Med. Sci. Monit. Basic. Res. 2014; 20: 82 - 92. [DOI:10.12659/MSMBR.890858]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb