دوره 4، شماره 72 و S12 - ( ويژه‌نامه ۱2- ضميمه پاييز 1398 )                   جلد 4 شماره 72 و S12 صفحات 288-298 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirabdollahi Shamsi F, Najjari R, Moradi A, Safari F. Ameliorating of Transcription Level of gp91Phox and P22Phox Subunits of NADPH Oxdisae Complex in Hypertrophied Heart of Rats by Resveratrol. J. Med. Plants. 2020; 4 (72) :288-298
URL: http://jmp.ir/article-1-2405-fa.html
میرعبداللهی شمسی فاطمه، نجاری راصیه، مرادی علی، صفری فاطمه. کاهش بیان ساب یونیت‌های‌gp91Phox و P22Phox کمپلکس NADPH اکسیداز در بافت قلب هیپرتروف شده موش‌های صحرایی توسط رزوراترول. فصلنامه گياهان دارویی. 1398; 4 (72) :288-298

URL: http://jmp.ir/article-1-2405-fa.html


1- گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران
2- گروه بیوشیمی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران
3- مرکز تحقیقات بیوتکنولوژی، دانشکده بین‌الملل، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران ، f.safari@ssu.ac.ir
چکیده:   (335 مشاهده)
مقدمه: هیپرتروفی بطن چپ (LVH) ناشی از هیپرتانسیون، پاسخی سازشی به اورلود فشار است که در صورت عدم درمان به سمت نارسایی قلبی پیش می‌رود. افزایش فعالیت کمپلکس NADPH اکسیداز نقش مهمی در پیشرفت LVH دارد.
هدف: هدف از این مطالعه بررسی اثر فنل طبیعی، رزوراترول، بر میزان نسخه برداری ساب یونیت‌های NADPH اکسیداز در بافت قلب هیپرتروف شده بود.
روش بررسی: موش‌های صحرایی نر نژاد ویستار به گروه‌های زیر تقسیم شدند: کنترل (دست نخورده)، شم (H+DMSO)‌، هیپرتروف بدون تیمار (H) و هیپرتروف تیمار شده با رزوراترول .(R+H) LVH توسط تنگی آئورت شکمی القا شد. فشار خون از طریق کانولاسیون شریان کاروتید اندازه‌گیری شد. بیان ژن‌های هدف توسط Real time RT-PCR تعیین شد.
نتایج: فشار سیستولی (SBP) و دیاستولی (DBP) در گروه H در مقایسه با کنترل به طور معناداری بیشتر بود (001/0 > P). در گروه R+H، SBP و DBP نسبت به گروه H کاهش یافت (001/0 > P). در گروه H سطح mRNA سابیونیت‌هایgp91Phox ، P22Phox‌، P67Phox و‌Rac1  در مقایسه با کنترل به ترتیب به میزان 5/14 ± 4/98‌، 8/8 ± 7/64‌، 5 ± 4/36 و 8/10 ± 2/73 درصد افزایش یافت (001/0 > P، 001/0 > P، 05/0 > P، 001/0 > P). اما در گروه R+H سطح gp91Phox‌، P22Phox و Rac1 mRNA به 5/4 ± 2/43‌، 7/5 ± 6/28 و 8/5 ± 5/30 درصد رسید که بیانگر اختلاف معنی‌داری با گروه H می‌باشد (01/0 > P، 05/0 > P، 05/0 > P).
نتیجه‌گیری: سطح نسخه‌برداری ساب یونیت‌های کمپلکس NADPH اکسیداز در میوکارد هیپرتروف شده افزایش می‌یابد. رزوراترول می‌تواند با کاهش میزان نسخه‌برداری ساب یونیت‌های مذکور قلب را در برابر هیپرتروفی ناشی از اورلود فشار محافظت نماید.
متن کامل [PDF 346 kb]   (52 دریافت)    
نوع مطالعه: پژوهشی | موضوع مقاله: بيوتكنولوژی
دریافت: ۱۳۹۷/۱۰/۶ | پذیرش: ۱۳۹۷/۱۲/۲۵

فهرست منابع
1. Morisco C, Sadoshima J, Trimarco B, Arora R, Vatner DE and Vatner SF. Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. American Journal of Physiology-Heart and Circulatory Physiol. 2003; 284 (4): H1043-H7. [DOI:10.1152/ajpheart.00990.2002]
2. Verdecchia P, Schillaci G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F and Porcellati C. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation. 1990; 81 (2): 528 - 36. [DOI:10.1161/01.CIR.81.2.528]
3. Bedard K and Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 2007; 87 (1): 245 - 313. [DOI:10.1152/physrev.00044.2005]
4. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004; 4 (3): 181 - 9. [DOI:10.1038/nri1312]
5. Babior BM. The respiratory burst oxidase. Curr. Opin. Hematol. 1995; 2: 55 - 60. [DOI:10.1097/00062752-199502010-00008]
6. BelAiba RS, Djordjevic T, Petry A, Diemer K, Bonello S, Banfi, B, Hess J, Pogrebniak A, Bickel C and Görlach A. NOX5 variants are functionally active in endothelial cells. Free Radical Biology & Medicine 2007; 42 (4): 446 - 59. [DOI:10.1016/j.freeradbiomed.2006.10.054]
7. Han HX and Zhang C. E242T polymorphism of NADPH oxidase P22Phox gene and ischemia cerebrovascular disease. 2004.
8. Lambeth JD, Cheng G, Arnold RS and Edens WA. Novel homologs of gp91 phox. Trends Biochem. Sci. 2000; 25: 459 - 61. [DOI:10.1016/S0968-0004(00)01658-3]
9. Li JM, Mullen AM, Yun S, Wientjes F, Brouns GY and Thrasher AJ. Essential role of the NADPH oxidase subunit p 47 (phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ. Res. 2002; 909: 143 - 50. [DOI:10.1161/hh0202.103615]
10. Gracia-Sancho J, Villarreal G, Zhang Y and García-Cardeña G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovascular Res. 2010; 85 (3): 514 - 9. [DOI:10.1093/cvr/cvp337]
11. Mashhadi FD, Reza JZ, Jamhiri M, Hafizi Z, Mehrjardi FZ and Safari F. The effect of resveratrol on angiotensin II levels and the rate of transcription of its receptors in the rat cardiac hypertrophy model. The J. Physiological Sciences 2017; 67 (2): 303 - 9. [DOI:10.1007/s12576-016-0465-0]
12. Seymour AM, Giles L, Ball V, Miller JJ, Clarke K, Carr CA and et al. In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc. Res. 2015; 106: 249 - 60. [DOI:10.1093/cvr/cvv101]
13. Gupta PK, DiPette DJ and Supowit SC. Protective effect of resveratrol against pressure overload‐induced heart failure. Food Science & Nutrition 2014; 2 (3): 218 - 29. [DOI:10.1002/fsn3.92]
14. Juric D, Wojciechowski P, Das DK and Netticadan T. Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. American J. Physiology-Heart and Circulatory Physiol. 2007; 292 (5): H2138 - H43. [DOI:10.1152/ajpheart.00852.2006]
15. Safari F, Zarei F, Shekarforoush S, Fekri A, Klishadi MS and Hekmatimoghaddam S. Combined 1, 25-Dihydroxy-vitamin D and Resveratrol: A Novel Therapeutic Approach to Ameliorate Ischemia Reperfusion-Induced Myocardial Injury. Int. J. Vitam. Nutr. Res. 2015; 85 (3 - 4): 174 - 84 [DOI:10.1024/0300-9831/a000236]
16. Mokni M, Hamlaoui S, Karkouch I, Amri M, Marzouki L, Limam F and Aouani E. Resveratrol Provides Cardioprotection after Ischemia/ reperfusion Injury via Modulation of Antioxidant Enzyme Activities. IJPR. 2013; 12 (4): 867 - 75.
17. Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA and Fiorillo C. SIRT1 modulates 67. MAPK pathways in ischemic-reperfused cardiomyocytes. CMLS. 2012; 69 (13): 2245 - 60. [DOI:10.1007/s00018-012-0925-5]
18. Wojciechowski P, Juric D, Louis XL, Thandapilly SJ, Yu L, Taylor C and Netticadan T. Resveratrol arrests and regresses the development of pressure overload- but not volume overload-induced cardiac hypertrophy in rats. JN. 2010; 140 (5): 962 - 8. [DOI:10.3945/jn.109.115006]
19. Juric D, Wojciechowski P, Das DK and Netticadan T. Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. American J. Physiology-Heart and Circulatory Physiol. 2007; 292 (5): H 2138 - H 43. [DOI:10.1152/ajpheart.00852.2006]
20. Liu Z, Song Y, Zhang X, Liu Z, Zhang W, Mao W, Wang W, Cui W, Zhang X, Jia X and Li N. Effects of trans‐resveratrol on hypertension‐induced cardiac hypertrophy using the partially nephrectomized rat model. Clinical and Experimental Pharmacology and Physiol. 2005; 32 (12): 1049 - 54. [DOI:10.1111/j.1440-1681.2005.04299.x]
21. Li JM, Gall NP, Grieve DJ, Chen M and Shah AM. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension. 2002; 40 (4): 477 - 84. [DOI:10.1161/01.HYP.0000032031.30374.32]
22. MacCarthy PA, Grieve DJ, Li JM, Dunster C, Kelly FJ and Shah AM. Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase. Circulation. 2001; 104 (24): 2967 - 4. [DOI:10.1161/hc4901.100382]
23. Bendall JK, Cave AC, Heymes C, Gall N and Shah AM. Pivotal role of a gp91phox‐containing NADPH oxidase in angiotensin II‐induced cardiac hypertrophy in mice. Circulation 2002; 105 (3): 293 - 6. [DOI:10.1161/hc0302.103712]
24. Chen JX, Zeng H, Tuo QH, Yu H, Meyrick B and Aschner JL. NADPH oxidase modulates myocardial Akt ERK1/2 activation and angiogenesis after hypoxia-reoxygenation. Amer. J. Physiol. Heart Circ. Physiol. 2007; 292 (4): 1664 - 74. [DOI:10.1152/ajpheart.01138.2006]
25. Landmesser U, Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S, Manes C, Schieffer B and Drexler H. Critical role of the NAD (P) H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circulation Res. 2007; 100 (6): 894 - 903. [DOI:10.1161/01.RES.0000261657.76299.ff]
26. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G and Shah AM. Increased myocardial NADPH oxidase activity in human heart failure. J. Am. Coll. Cardiol. 2003; 41 (12): 2164 - 71. [DOI:10.1016/S0735-1097(03)00471-6]
27. Li J, Zhu H, Shen E, Wan L, Arnold JMO and Peng T. Deficiency of Rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 2010; 59 (8): 2033 - 42. [DOI:10.2337/db09-1800]
28. Talukder MA, Elnakish MT, Yang F, Nishijima Y, Alhaj MA, Velayutham M, Hassanain HH and Zweier JL. Cardiomyocyte-specific overexpression of an active form of Rac predisposes the heart to increased myocardial stunning and ischemia-reperfusion injury. Am. J. Physiol. Heart. Circ. Physiol. 2013; 15: 304 (2): 294 - 302. [DOI:10.1152/ajpheart.00367.2012]
29. Elnakish MT, Awad MM, Hassona MD, Alhaj MA, Kulkarni A, Citro LA, Sayyid M, Abouelnaga ZA, El-Sayed O, Kuppusamy P, Moldovan L, Khan M and Hassanain HH. Cardiac remodeling caused by transgenic overexpression of a corn Rac gene. Am. J. Physiol. Heart Circ. Physiol. 2011; 301 (3): 868 - 80. [DOI:10.1152/ajpheart.00807.2010]
30. Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Hikoso S, Kashiwase K, Takeda T, Watanabe T, Mano T, Matsumura Y, Ueno H and Hori M. The small GTP-binding protein Rac1 induces cardiac myocyte hypertrophy through the activation of apoptosis signal-regulating kinase 1 and nuclear factor-kappa B. J. Biol. Chem. 2003; 278 (23): 20770 - 77. [DOI:10.1074/jbc.M213203200]
31. Morel E, Marcantoni A, Gastineau M, Birkedal R, Rochais F, Garnier A, Lompré AM, Vandecasteele G and Lezoualc'h F. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ. Res. 2005; 97 (12): 1296 - 304. [DOI:10.1161/01.RES.0000194325.31359.86]
32. Zhang H, Morgan B, Potter BJ, Ma L, Dellsperger KC, Ungvari Z and Zhang C. Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol. 2010; 299 (4): 985 - 94. [DOI:10.1152/ajpheart.00489.2010]
33. Zhang H, Zhang J, Ungvari Z and Zhang C. Resveratrol improves endothelial function: role of TNF {alpha} and vascular oxidative stress. Arterioscler. Thromb. Vasc. Biol. 2009; 29 (8): 1164 - 71. [DOI:10.1161/ATVBAHA.109.187146]
34. Guo R, Li W, Liu B, Li S, Zhang B and Xu Y. Resveratrol protects vascular smooth muscle cells against high glucose-induced oxidative stress and cell proliferation in vitro. Med. Sci. Monit. Basic. Res. 2014; 20: 82 - 92. [DOI:10.12659/MSMBR.890858]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به فصلنامه علمی پژوهشی گیاهان دارویی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb