year 24, Issue 94 (7-2025)                   J. Med. Plants 2025, 24(94): 31-45 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Banaei A, Zeinali A, Parsa M, Azadi Gonbad R, Falakro K. Effect of nano chitosan particles on physiological and phytochemical parameters of tea plant (Camellia sinensis (L.) Kuntze) Kashef cultivar under drought stress. J. Med. Plants 2025; 24 (94) :31-45
URL: http://jmp.ir/article-1-3805-en.html
1- Department of Nano and Biophysics, Research Institute for Applied Sciences (RIAS), ACECR, Tehran, Iran
2- Industrial and Environmental Biotechnology Department, Research Institute for Applied Science (RIAS), ACECR, Tehran, Iran , zeinali@acecr.ac.ir
3- Industrial and Environmental Biotechnology Department, Research Institute for Applied Science (RIAS), ACECR, Tehran, Iran
4- Tea Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Lahijan, Iran
Abstract:   (120 Views)
Background: Tea cultivation faces growing challenges due to drought, a problem worsened by climate change. One potential method to enhance drought tolerance is the foliar application of chitosan and nano chitosan. Objective: This study investigates the effects of nano chitosan particles (NCP) on mitigating drought stress in tea plants (Kashef cultivar) while maintaining quality. Method: Four concentrations of NCP solution (0, 25, 50, and 100 mg L-¹) were applied twice during the dry season in summer 2021 at the Lahijan Tea Research Centre in Iran. Physiological, biochemical, and metabolic parameters were measured under severe drought conditions (25% soil field capacity) and compared to control plants (no drought stress or NCP treatment). Results: The data showed that NCP increased the total polyphenol and flavonoid content, except for catechin. Under drought conditions, NCP treatment significantly enhanced relative water content (RWC), total chlorophyll, shoot numbers, green leaf yield, proline, and protein levels. Antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) were activated to counter oxidative stress. Application of the highest NCP concentration (100 mg L-¹) significantly enhanced polyphenol accumulation, contributing to improved drought tolerance and tea quality. Conclusion: These findings suggest that NCP could be an eco-friendly and effective tool for improving drought resilience in tea plants.
Full-Text [PDF 723 kb]   (54 Downloads)    
Type of Study: Research | Subject: Agriculture & Ethnobotany
Received: 2024/12/29 | Accepted: 2025/06/11 | Published: 2025/07/1

References
1. Dien DC, Thu TTP, Moe K and Yamakawa T. Proline and carbohydrate metabolism in rice varieties (Oryza sativa L.) under various drought and recovery conditions. Plant Physiol. Rep. 2019; 24: 376-387. [DOI:10.1007/s40502-019-00462-y]
2. Ali EF and Hassan FAS. Water stress alleviation of roselle plant by silicon treatment through some physiological and biochemical responses. Annu. Res. Rev. Biol. 2017; 21(3): 1-17. [DOI:10.9734/ARRB/2017/37670]
3. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS and Pal A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int. J. Biol. Macromol. 2013; 62: 677-683. [DOI:10.1016/j.ijbiomac.2013.10.012]
4. Shinde NA, Kawar PG, and Dalvi SG. Chitosan-based nanoconjugates: A promising solution for enhancing crop drought-Stress resilience and sustainable yield in the face of climate change. Plant Nano Biol. 2024; 100059. [DOI:10.1016/j.plana.2024.100059]
5. Dawood MG, El-Awadi ME-s and Sadak MS. Chitosan and its nanoform regulates physiological processes and antioxidant mechanisms to improve drought stress tolerance of Vicia faba Plant. J. Soil. Sci. Plant. Nutr. 2024; 24(3): 5696-5709. [DOI:10.1007/s42729-024-01934-3]
6. Sen SK, Chouhan D, Das D, Ghosh R and Mandal P. Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. Int. J. Biol. Macromol. 2020; 145: 108-123. [DOI:10.1016/j.ijbiomac.2019.12.170]
7. Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K and Acharya K. Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci. Rep. 2015; 5(1): 15195. [DOI:10.1038/srep15195]
8. Cheruiyot EK, Mumera LM, NG'ETICH WK, Hassanali A, Wachira F and Wanyoko JK. Shoot epicatechin and epigallocatechin contents respond to water stress in tea (Camellia sinensis (L.) O. Kuntze). Biosci. Biotechnol. Biochem. 2008; 72(5): 1219-1226. [DOI:10.1271/bbb.70698]
9. Cheruiyot EK, Mumera LM, Ng'etich WK, Hassanali A and Wachira F. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.). Biosci. Biotechnol. Biochem. 2007; 71(9): 2190-2197. [DOI:10.1271/bbb.70156]
10. Kittipornkul P, Treesubsuntorn C and Thiravetyan P. Effect of exogenous catechin and salicylic acid on rice productivity under ozone stress: the role of chlorophyll contents, lipid peroxidation, and antioxidant enzymes. Environ. Sci. Pollut. Res. 2020; 27: 25774-25784. [DOI:10.1007/s11356-020-08962-3]
11. Das A, Das S and Mondal TK. Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization. Plant Mol. Biol. Rep. 2012; 30: 1088-1101. [DOI:10.1007/s11105-012-0422-x]
12. Wang Y, Fan K, Wang J, Ding Z-t, Wang H, Bi C-h, Zhang Y-w and Sun H-w. Proteomic analysis of Camellia sinensis L. reveals a synergistic network in the response to drought stress and recovery. Journal of Plant Physiol. 2017; 219: 91-99. [DOI:10.1016/j.jplph.2017.10.001]
13. Chen X, Zhuang C, He Y, Wang L, Han G, Chen C and He H. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatments. Agric. Water Manag. 2010; 97(3): 419-425. [DOI:10.1016/j.agwat.2009.10.015]
14. ISO14502-1, Determination of substances characteristic of green and black tea -Part 1: Content of total polyphenols in tea -Colorimetric method using Folin-Ciocalteu reagent; 2005a.
15. ISO14502-2, Determination of substances characteristic of green and black tea. Part 2. Content of catechins in green tea-method using highperformance liquid chromatography.; 2005b.
16. Senthilkumar M, Amaresan N and Sankaranarayanan A. Plant-microbe interactions: Springer Protocols Handbooks, New York; 2021. [DOI:10.1007/978-1-0716-1080-0]
17. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949; 24(1): 1-15. [DOI:10.1104/pp.24.1.1]
18. Institute IPGR, Descriptors for Tea (Camellia Sinensis): Bioversity International; 1997.
19. Bates LS, Waldren RP and Teare I. Rapid determination of free proline for water-stress studies. Plant and Soil. 1973; 39: 205-207. [DOI:10.1007/BF00018060]
20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72(1-2): 248-254. [DOI:10.1006/abio.1976.9999]
21. Aebi H. Catalase, in Methods of enzymatic analysis. 1974, Elsevier. p. 673-680. [DOI:10.1016/B978-0-12-091302-2.50032-3]
22. Beauchamp C and Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971; 44(1): 276-287. [DOI:10.1016/0003-2697(71)90370-8]
23. Bolat I, Dikilitas M, Ercisli S, Ikinci A and Tonkaz T. The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. Sci. World J. 2014; 2014(1): 769732. [DOI:10.1155/2014/769732]
24. Zagoskina NV, Zubova MY, Nechaeva TL, Kazantseva VV, Goncharuk EA, Katanskaya VM, Baranova EN and Aksenova MA. Polyphenols in plants: structure, biosynthesis, abiotic stress regulation, and practical applications. Int. J. Mol. Sci. 2023; 24(18): 13874. [DOI:10.3390/ijms241813874]
25. Ali EF, El-Shehawi AM, Ibrahim OH, Abdul-Hafeez EY, Moussa MM and Hassan FAS. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus L. through biochemical and gene expression modulation. Plant Physiol Biochem. 2021; 161: 166-175. [DOI:10.1016/j.plaphy.2021.02.008]
26. Maritim TK, Kamunya SM, Mireji P, Mwendia C, Muoki RC, Cheruiyot EK and Wachira FN. Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress. J. Hortic. Sci. Biotechnol. 2015; 90(4): 395-400. [DOI:10.1080/14620316.2015.11513200]
27. Bistgani ZE, Siadat SA, Bakhshandeh A, Pirbalouti AG and Hashemi M. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop. J. 2017; 5(5): 407-415. [DOI:10.1016/j.cj.2017.04.003]
28. Hao T, Yang Z, Liang J, Yu J and Liu J. Foliar application of carnosine and chitosan improving drought tolerance in bermudagrass. Agronomy 2023; 13(2): 442. [DOI:10.3390/agronomy13020442]
29. William S and Carr MKV. Responses of tea (Camellia sinensis) to irrigation and fertilizer on yield. Experimental Agric. 1991; 27(2): 177-191. [DOI:10.1017/S0014479700018822]
30. Carr MKV. The role of water in the growth of the tea (Camellia sinensis) crop: a synthesis of research in Eastern Africa. 1. Water relations. Exp. Agric. 2010; 46(3): 327-349. [DOI:10.1017/S0014479710000293]
31. Chaeikar SS, Falakro K, Majd Salimi K, Alinaghipour B and Rahimi M. Evaluation of response to water-deficit stress in some selected tea (Camellia sinensis L.) clones based on growth characteristics. Iran. J. Hortic. Sci. 2020; 51(2): 319-328.
32. Cheruiyot EK, Mumera LM, Ng'etich WK, Hassanali A and Wachira FN. High fertilizer rates increase susceptibility of tea to water stress. J. Plant Nutr. 2009; 33(1): 115-129. [DOI:10.1080/01904160903392659]
33. Sharma P and Kumar S. Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze]. J. Biosci. 2005; 30: 231-235. [DOI:10.1007/BF02703703]
34. Divya K and Jisha M. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018; 16: 101-112. [DOI:10.1007/s10311-017-0670-y]
35. Hidangmayum A, Dwivedi P, Katiyar D, and Hemantaranjan A. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants 2019; 25: 313-326. [DOI:10.1007/s12298-018-0633-1]
36. Attaran Dowom S, Karimian Z, Mostafaei Dehnavi M and Samiei L. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides Kar. under drought stress. BMC Plant Biol. 2022; 22(1): 364. [DOI:10.1186/s12870-022-03689-4]
37. Li R, He J, Xie H, Wang W, Bose SK, Sun Y, Hu J and Yin H. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int. J. Biol. Macromol. 2019; 126: 91-100. [DOI:10.1016/j.ijbiomac.2018.12.118]
38. Zhang X, Hu C, Sun X, Zang X, Zhang X, Fang T and Xu N. Comparative transcriptome analysis reveals chitooligosaccharides-induced stress tolerance of Gracilariopsis lemaneiformis under high temperature stress. Aquaculture 2020; 519: 734876. [DOI:10.1016/j.aquaculture.2019.734876]
39. Sathiyabama M and Manikandan A. Foliar application of chitosan nanoparticle improves yield, mineral content and boost innate immunity in finger millet plants. Carbohydr Polym. 2021; 258: 117691. [DOI:10.1016/j.carbpol.2021.117691]
40. Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X, Huang L and Yan Y. Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J. Proteome. Res. 2017; 16(8): 3039-3052. [DOI:10.1021/acs.jproteome.7b00334]
41. Jeyaramraja PR, Raj Kumar R, Pius PK and Thomas J. Photoassimilatory and photorespiratory behaviour of certain drought tolerant and susceptible tea clones. Photosynthetica 2003; 41(4): 579-582. [DOI:10.1023/B:PHOT.0000027523.51145.a0]
42. Langaroudi IK, Piri S, Chaeikar SS and Salehi B. Evaluating drought stress tolerance in different Camellia sinensis L. cultivars and effect of melatonin on strengthening antioxidant system. Sci. Hortic. 2023; 307: 111517. [DOI:10.1016/j.scienta.2022.111517]
43. Liu S-C, Yao M-Z, Ma C-L, Jin J-Q, Ma J-Q, Li C-F and Chen L. Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions. Sci. Hortic. 2015; 184: 129-141. [DOI:10.1016/j.scienta.2014.12.036]
44. Panda P, Nath S, Chanu TT, Sharma GD and Panda SK. Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiol. Plant. 2011; 33(5): 1737-1747. [DOI:10.1007/s11738-011-0710-3]
45. Buller DB and Aune RK. The effects of speech rate similarity on compliance: Application of communication accommodation theory. West. J. Commun. 1992; 56(1): 37-53. [DOI:10.1080/10570319209374400]
46. Lin W, Hu X, Zhang W, Rogers WJ and Cai W. Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J. Plant Physiol. 2005; 162(8): 937-944. [DOI:10.1016/j.jplph.2004.10.003]
47. Kim H-J, Chen F, Wang X and Rajapakse NC. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J. Agric Food Chem. 2005; 53(9): 3696-3701. [DOI:10.1021/jf0480804]
48. Zhang H, Zhao X, Yang J, Yin H, Wang W, Lu H and Du Y. Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. Plant Cell Rep. 2011; 30: 1153-1162. [DOI:10.1007/s00299-011-1024-z]
49. Ma D, Sun D, Wang C, Li Y and Guo T. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 2014; 80: 60-66. [DOI:10.1016/j.plaphy.2014.03.024]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb