1. Dien DC, Thu TTP, Moe K and Yamakawa T. Proline and carbohydrate metabolism in rice varieties (Oryza sativa L.) under various drought and recovery conditions. Plant Physiol. Rep. 2019; 24: 376-387. [
DOI:10.1007/s40502-019-00462-y]
2. Ali EF and Hassan FAS. Water stress alleviation of roselle plant by silicon treatment through some physiological and biochemical responses. Annu. Res. Rev. Biol. 2017; 21(3): 1-17. [
DOI:10.9734/ARRB/2017/37670]
3. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS and Pal A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int. J. Biol. Macromol. 2013; 62: 677-683. [
DOI:10.1016/j.ijbiomac.2013.10.012]
4. Shinde NA, Kawar PG, and Dalvi SG. Chitosan-based nanoconjugates: A promising solution for enhancing crop drought-Stress resilience and sustainable yield in the face of climate change. Plant Nano Biol. 2024; 100059. [
DOI:10.1016/j.plana.2024.100059]
5. Dawood MG, El-Awadi ME-s and Sadak MS. Chitosan and its nanoform regulates physiological processes and antioxidant mechanisms to improve drought stress tolerance of Vicia faba Plant. J. Soil. Sci. Plant. Nutr. 2024; 24(3): 5696-5709. [
DOI:10.1007/s42729-024-01934-3]
6. Sen SK, Chouhan D, Das D, Ghosh R and Mandal P. Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. Int. J. Biol. Macromol. 2020; 145: 108-123. [
DOI:10.1016/j.ijbiomac.2019.12.170]
7. Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K and Acharya K. Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci. Rep. 2015; 5(1): 15195. [
DOI:10.1038/srep15195]
8. Cheruiyot EK, Mumera LM, NG'ETICH WK, Hassanali A, Wachira F and Wanyoko JK. Shoot epicatechin and epigallocatechin contents respond to water stress in tea (Camellia sinensis (L.) O. Kuntze). Biosci. Biotechnol. Biochem. 2008; 72(5): 1219-1226. [
DOI:10.1271/bbb.70698]
9. Cheruiyot EK, Mumera LM, Ng'etich WK, Hassanali A and Wachira F. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.). Biosci. Biotechnol. Biochem. 2007; 71(9): 2190-2197. [
DOI:10.1271/bbb.70156]
10. Kittipornkul P, Treesubsuntorn C and Thiravetyan P. Effect of exogenous catechin and salicylic acid on rice productivity under ozone stress: the role of chlorophyll contents, lipid peroxidation, and antioxidant enzymes. Environ. Sci. Pollut. Res. 2020; 27: 25774-25784. [
DOI:10.1007/s11356-020-08962-3]
11. Das A, Das S and Mondal TK. Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization. Plant Mol. Biol. Rep. 2012; 30: 1088-1101. [
DOI:10.1007/s11105-012-0422-x]
12. Wang Y, Fan K, Wang J, Ding Z-t, Wang H, Bi C-h, Zhang Y-w and Sun H-w. Proteomic analysis of Camellia sinensis L. reveals a synergistic network in the response to drought stress and recovery. Journal of Plant Physiol. 2017; 219: 91-99. [
DOI:10.1016/j.jplph.2017.10.001]
13. Chen X, Zhuang C, He Y, Wang L, Han G, Chen C and He H. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatments. Agric. Water Manag. 2010; 97(3): 419-425. [
DOI:10.1016/j.agwat.2009.10.015]
14. ISO14502-1, Determination of substances characteristic of green and black tea -Part 1: Content of total polyphenols in tea -Colorimetric method using Folin-Ciocalteu reagent; 2005a.
15. ISO14502-2, Determination of substances characteristic of green and black tea. Part 2. Content of catechins in green tea-method using highperformance liquid chromatography.; 2005b.
16. Senthilkumar M, Amaresan N and Sankaranarayanan A. Plant-microbe interactions: Springer Protocols Handbooks, New York; 2021. [
DOI:10.1007/978-1-0716-1080-0]
17. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949; 24(1): 1-15. [
DOI:10.1104/pp.24.1.1]
18. Institute IPGR, Descriptors for Tea (Camellia Sinensis): Bioversity International; 1997.
19. Bates LS, Waldren RP and Teare I. Rapid determination of free proline for water-stress studies. Plant and Soil. 1973; 39: 205-207. [
DOI:10.1007/BF00018060]
20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72(1-2): 248-254. [
DOI:10.1006/abio.1976.9999]
21. Aebi H. Catalase, in Methods of enzymatic analysis. 1974, Elsevier. p. 673-680. [
DOI:10.1016/B978-0-12-091302-2.50032-3]
22. Beauchamp C and Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971; 44(1): 276-287. [
DOI:10.1016/0003-2697(71)90370-8]
23. Bolat I, Dikilitas M, Ercisli S, Ikinci A and Tonkaz T. The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. Sci. World J. 2014; 2014(1): 769732. [
DOI:10.1155/2014/769732]
24. Zagoskina NV, Zubova MY, Nechaeva TL, Kazantseva VV, Goncharuk EA, Katanskaya VM, Baranova EN and Aksenova MA. Polyphenols in plants: structure, biosynthesis, abiotic stress regulation, and practical applications. Int. J. Mol. Sci. 2023; 24(18): 13874. [
DOI:10.3390/ijms241813874]
25. Ali EF, El-Shehawi AM, Ibrahim OH, Abdul-Hafeez EY, Moussa MM and Hassan FAS. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus L. through biochemical and gene expression modulation. Plant Physiol Biochem. 2021; 161: 166-175. [
DOI:10.1016/j.plaphy.2021.02.008]
26. Maritim TK, Kamunya SM, Mireji P, Mwendia C, Muoki RC, Cheruiyot EK and Wachira FN. Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress. J. Hortic. Sci. Biotechnol. 2015; 90(4): 395-400. [
DOI:10.1080/14620316.2015.11513200]
27. Bistgani ZE, Siadat SA, Bakhshandeh A, Pirbalouti AG and Hashemi M. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop. J. 2017; 5(5): 407-415. [
DOI:10.1016/j.cj.2017.04.003]
28. Hao T, Yang Z, Liang J, Yu J and Liu J. Foliar application of carnosine and chitosan improving drought tolerance in bermudagrass. Agronomy 2023; 13(2): 442. [
DOI:10.3390/agronomy13020442]
29. William S and Carr MKV. Responses of tea (Camellia sinensis) to irrigation and fertilizer on yield. Experimental Agric. 1991; 27(2): 177-191. [
DOI:10.1017/S0014479700018822]
30. Carr MKV. The role of water in the growth of the tea (Camellia sinensis) crop: a synthesis of research in Eastern Africa. 1. Water relations. Exp. Agric. 2010; 46(3): 327-349. [
DOI:10.1017/S0014479710000293]
31. Chaeikar SS, Falakro K, Majd Salimi K, Alinaghipour B and Rahimi M. Evaluation of response to water-deficit stress in some selected tea (Camellia sinensis L.) clones based on growth characteristics. Iran. J. Hortic. Sci. 2020; 51(2): 319-328.
32. Cheruiyot EK, Mumera LM, Ng'etich WK, Hassanali A and Wachira FN. High fertilizer rates increase susceptibility of tea to water stress. J. Plant Nutr. 2009; 33(1): 115-129. [
DOI:10.1080/01904160903392659]
33. Sharma P and Kumar S. Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze]. J. Biosci. 2005; 30: 231-235. [
DOI:10.1007/BF02703703]
34. Divya K and Jisha M. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018; 16: 101-112. [
DOI:10.1007/s10311-017-0670-y]
35. Hidangmayum A, Dwivedi P, Katiyar D, and Hemantaranjan A. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants 2019; 25: 313-326. [
DOI:10.1007/s12298-018-0633-1]
36. Attaran Dowom S, Karimian Z, Mostafaei Dehnavi M and Samiei L. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides Kar. under drought stress. BMC Plant Biol. 2022; 22(1): 364. [
DOI:10.1186/s12870-022-03689-4]
37. Li R, He J, Xie H, Wang W, Bose SK, Sun Y, Hu J and Yin H. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int. J. Biol. Macromol. 2019; 126: 91-100. [
DOI:10.1016/j.ijbiomac.2018.12.118]
38. Zhang X, Hu C, Sun X, Zang X, Zhang X, Fang T and Xu N. Comparative transcriptome analysis reveals chitooligosaccharides-induced stress tolerance of Gracilariopsis lemaneiformis under high temperature stress. Aquaculture 2020; 519: 734876. [
DOI:10.1016/j.aquaculture.2019.734876]
39. Sathiyabama M and Manikandan A. Foliar application of chitosan nanoparticle improves yield, mineral content and boost innate immunity in finger millet plants. Carbohydr Polym. 2021; 258: 117691. [
DOI:10.1016/j.carbpol.2021.117691]
40. Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X, Huang L and Yan Y. Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J. Proteome. Res. 2017; 16(8): 3039-3052. [
DOI:10.1021/acs.jproteome.7b00334]
41. Jeyaramraja PR, Raj Kumar R, Pius PK and Thomas J. Photoassimilatory and photorespiratory behaviour of certain drought tolerant and susceptible tea clones. Photosynthetica 2003; 41(4): 579-582. [
DOI:10.1023/B:PHOT.0000027523.51145.a0]
42. Langaroudi IK, Piri S, Chaeikar SS and Salehi B. Evaluating drought stress tolerance in different Camellia sinensis L. cultivars and effect of melatonin on strengthening antioxidant system. Sci. Hortic. 2023; 307: 111517. [
DOI:10.1016/j.scienta.2022.111517]
43. Liu S-C, Yao M-Z, Ma C-L, Jin J-Q, Ma J-Q, Li C-F and Chen L. Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions. Sci. Hortic. 2015; 184: 129-141. [
DOI:10.1016/j.scienta.2014.12.036]
44. Panda P, Nath S, Chanu TT, Sharma GD and Panda SK. Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiol. Plant. 2011; 33(5): 1737-1747. [
DOI:10.1007/s11738-011-0710-3]
45. Buller DB and Aune RK. The effects of speech rate similarity on compliance: Application of communication accommodation theory. West. J. Commun. 1992; 56(1): 37-53. [
DOI:10.1080/10570319209374400]
46. Lin W, Hu X, Zhang W, Rogers WJ and Cai W. Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J. Plant Physiol. 2005; 162(8): 937-944. [
DOI:10.1016/j.jplph.2004.10.003]
47. Kim H-J, Chen F, Wang X and Rajapakse NC. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J. Agric Food Chem. 2005; 53(9): 3696-3701. [
DOI:10.1021/jf0480804]
48. Zhang H, Zhao X, Yang J, Yin H, Wang W, Lu H and Du Y. Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. Plant Cell Rep. 2011; 30: 1153-1162. [
DOI:10.1007/s00299-011-1024-z]
49. Ma D, Sun D, Wang C, Li Y and Guo T. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 2014; 80: 60-66. [
DOI:10.1016/j.plaphy.2014.03.024]