year 24, Issue 95 (10-2025)                   J. Med. Plants 2025, 24(95): 45-59 | Back to browse issues page

Ethics code: IRB00003121

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Thi Thu Nguyen H, Kim Nguyen N, Thi Thu Dinh H, Vinh Trinh Q, Thi Nhu Nguyen Q, Thi Thanh Nguyen H, et al . Antidiabetic effects of Morus alba Linn leaf extract in a high-fat diet and streptozotocin-induced type 2 diabetic mouse model. J. Med. Plants 2025; 24 (95) :45-59
URL: http://jmp.ir/article-1-3774-en.html
1- Department of Traditional Medicine, Hanoi Medical University, Hanoi, Vietnam
2- Department of Pharmacology, Hanoi Medical University, Hanoi, Vietnam
3- Department of Traditional Medicine, National Hospital of Traditional Medicine, Hanoi, Vietnam
4- Department of Traditional Medicine, Military Institute of Traditional Medicine, Hanoi, Vietnam
5- Department of Pharmacology, Hanoi Medical University, Hanoi, Vietnam , phamvananh@hmu.edu.vn
Abstract:   (7 Views)
Background: The rising prevalence of diabetes mellitus underscores the need for safer therapeutic options, including natural products. Morus alba Linn leaf extract (MAE), a traditional remedy and the key component of the herbal product DIDALA, has been investigated for its potential antidiabetic properties. Objective: This study aimed to investigate the hypoglycemic and lipid-modulating effects of MAE in a type 2 diabetes (T2DM) experimental model induced by a high-fat diet (HFD) and streptozotocin (STZ) in mice. Methods: T2DM was induced in male Swiss mice by 8 weeks of an HFD followed by an intraperitoneal injection of STZ at 100 mg/kg. Diabetic mice were orally administered for 14 days with either a low dose MAE (0.8208 g/kg/day), a high dose MAE (2.4624 g/kg/day), or Gliclazide (80 mg/kg/day) as a positive control. Outcomes assessed included fasting blood glucose, lipid profiles (total cholesterol, LDL-cholesterol), liver and pancreatic malondialdehyde (MDA) as a marker of oxidative stress, and histological examination. Results: The low dose of MAE significantly reduced fasting blood glucose and improved lipid profile by lowering total cholesterol and LDL-cholesterol, with outcomes comparable to the Gliclazide group. It also reduced liver and pancreatic MDA levels, indicating decreased oxidative stress, and ameliorated histopathological alterations in the liver and pancreas. The high-dose MAE exerted less pronounced effects on glucose levels but still demonstrated some lipid and oxidative stress benefits. Conclusion: MAE, particularly at the lower dose, exhibits promising hypoglycemic and lipid-lowering effects in a HFD/STZ-induced T2DM mouse model, supporting its potential as a natural therapeutic candidate for diabetes management. Further studies should explore dose optimization, long-term efficacy, safety, and mechanisms of action.
Full-Text [PDF 1221 kb]   (5 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2024/11/9 | Accepted: 2025/08/9 | Published: 2025/10/2

References
1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33(Suppl 1): S62-S69. [DOI:10.2337/dc10-S062]
2. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ and Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022; 183: 109119. [DOI:10.1016/j.diabres.2021.109119]
3. Lada P and Idrees U. Toxicity of oral agents used to treat diabetes. J. Pharm. Pract. 2005; 18(3): 145-156. [DOI:10.1177/0897190005277239]
4. Salehi B, Ata A, V. Anil Kumar N, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Abdulmajid Ayatollahi S, Valere Tsouh Fokou P, Kobarfard F, Amiruddin Zakaria Z, Iriti M, Taheri Y, Martorell M, Sureda A, N. Setzer W, Durazzo A, Lucarini M, Santini A, Capasso R, Adrian Ostrander E, -ur-Rahman A, Iqbal Choudhary M, C. Cho W and Sharifi-Rad J. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019; 9(10): 551. [DOI:10.3390/biom9100551]
5. Putra IMWA, Fakhrudin N, Nurrochmad A and Wahyuono S. A review of medicinal plants with renoprotective activity in diabetic Nephropathy animal models. Life 2023; 13(2): 560. [DOI:10.3390/life13020560]
6. Skovsø S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J. Diabet. Investig. 2014; 5(4): 349-358. [DOI:10.1111/jdi.12235]
7. Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr. Protoc. Pharmacol. 2015; 70: 5.47.1-5.47.20. [DOI:10.1002/0471141755.ph0547s70]
8. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM and Reaven GM. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 2000; 49(11): 1390-1394. [DOI:10.1053/meta.2000.17721]
9. Srinivasan K and Ramarao P. Animal models in type 2 diabetes research: an overview. Indian. J. Med. Res. 2007; 125(3): 451-472.
10. Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, Belleville K, Beaudet N, Longpré J-M, Carpentier AC, Geraldes P and Sarret P. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci. Rep. 2018; 8: 424. [DOI:10.1038/s41598-017-18896-5]
11. Saadane A, Lessieur EM, Du Y, Liu H and Kern TS. Successful induction of diabetes in mice demonstrates no gender difference in development of early diabetic retinopathy. PLoS One 2020; 15(9): e0238727. [DOI:10.1371/journal.pone.0238727]
12. Jan B, Zahiruddin S, Basist P, Irfan M, Abass S and Ahmad S. Metabolomic profiling and identification of antioxidant and antidiabetic compounds from leaves of different varieties of Morus alba Linn grown in Kashmir. ACS Omega 2022; 7: 24317-24328. [DOI:10.1021/acsomega.2c01623]
13. Jeong HI, Jang S and Kim KH. Morus alba L. for Blood Sugar Management: A Systematic Review and Meta-Analysis. Evid. Based. Complement. Alternat. Med. 2022; 2022(1): 9282154. [DOI:10.1155/2022/9282154]
14. Vietnamese Ministry of Health. Vietnamese Pharmacopeia Fifth edition. Ha Noi: Medical Publishing House Co., Ltd.; 2017, 1136-1137.
15. Racine KC, Iglesias-Carres L, Herring JA, Wieland KL, Ellsworth PN, Tessem JS, Ferruzzi MG, Kay CD and Neilson AP. The high-fat diet and low-dose streptozotocin type-2 diabetes model induces hyperinsulinemia and insulin resistance in male but not female C57BL/6J mice. Nutr. Res. 2024; 131: 135-146. [DOI:10.1016/j.nutres.2024.09.008]
16. Binh PQ, Thuan ND, Hang VV, Phuong PT, Su PQ, Phu DV, Thuong PT, Thu Hang DT and Van Anh PT. Antidiabetic activity of Gomphogyne bonii Gagnep. extract against high-fat diet and Alloxan-Induced type 2 diabetes in mice. Evid. Based. Complement. Alternat. Med. 2021; 2021: 8648209. [DOI:10.1155/2021/8648209]
17. Fauzi A, Kifli N, Noor MHM, Hamzah H and Azlan A. Bioactivity, phytochemistry studies and subacute in vivo toxicity of ethanolic leaf extract of white mulberry (Morus alba Linn.) in female mice. J. Ethnopharmacol. 2024; 325: 117914. [DOI:10.1016/j.jep.2024.117914]
18. Li Y, Zhang X, Liang C, Hu J and Yu Z. Safety evaluation of mulberry leaf extract: Acute, subacute toxicity and genotoxicity studies. Regul. Toxicol. Pharmacol. 2018; 95: 220-226. [DOI:10.1016/j.yrtph.2018.03.007]
19. Institutional Animal Care and Use Committee. Anesthesia (Guideline). Iowa, United States of America: University of Iowa; 2023.
20. Martínez-Sánchez F, Diaz-Jarquin A, Vargas-Abonce VP, Torres-Cuevas JL, Guerrero-Castillo AP, Medina-Julio D, Meza-Arana C, Gulías-Herrero A and Gómez-Sámano M. Comparison of adiposity indices and their association with Insulin resistance and β-Cell dysfunction in primary prevention for diabetes in Mexican population. Diabet. Epidemiol. Manag. 2022; 8(10053): 100091. [DOI:10.1016/j.deman.2022.100091]
21. Deeds MC, Anderson JM, Armstrong AS, Gastineau DA, Hiddinga HJ, Jahangir A, Eberhardt NL and Kudva YC. Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab. Anim. 2011; 45(3): 131-140. [DOI:10.1258/la.2010.010090]
22. Belcher G, Lambert C, Edwards G, Urquhart R and Matthews DR. Safety and tolerability of pioglitazone, metformin, and gliclazide in the treatment of type 2 diabetes. Diabet. Res. Clin. Pract. 2005; 70 1: 53-62. [DOI:10.1016/j.diabres.2005.02.011]
23. Li Y-G, Ji D-F, Zhong S, Lin T-B, Lv Z-Q, Hu G-Y and Wang X. 1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice. Sci. Rep. 2013; 3: 1377. [DOI:10.1038/srep01377]
24. Li J, Ji T, Su S, Zhu Y, Chen X, Shang E, Guo S, Qian D and Duan J. Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway. J. Ethnopharmacol. 2022; 283: 114713. [DOI:10.1016/j.jep.2021.114713]
25. Zhao X, Fu Z, Yao M, Cao Y, Zhu T, Mao R, Huang M, Pang Y, Meng X, Li L, Zhang B, Li Y and Zhang H. Mulberry (Morus alba L.) leaf polysaccharide ameliorates insulin resistance- and adipose deposition-associated gut microbiota and lipid metabolites in high-fat diet-induced obese mice. Food Sci. Nutr. 2022; 10(2): 617-630. [DOI:10.1002/fsn3.2689]
26. Cheng V and Kashyap SR. Weight considerations in pharmacotherapy for type 2 diabetes. J. Obes. 2011; 2011: 984245. [DOI:10.1155/2011/984245]
27. Gómez L, Molinar‐Toribio E, Calvo-Torras MA, Adelantado C, Juan M, Planas J, Cañas X, Lozano C, Pumarola S, Clapés P and Torres JL. D-Fagomine lowers postprandial blood glucose and modulates bacterial adhesion. Br. J. Nutr. 2012; 107(12): 1739-46. [DOI:10.1017/S0007114511005009]
28. Wang Y, Xiang L, Wang C, Tang C and He X. Antidiabetic and antioxidant effects and phytochemicals of Mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS One 2013; 8(7): e71144. [DOI:10.1371/journal.pone.0071144]
29. Hunyadi A, Martins A, Hsieh T-J, Seres A and Zupkó I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS One 2012; 7(11): e50619. [DOI:10.1371/journal.pone.0050619]
30. Oku T, Yamada M, Nakamura M, Sadamori N and Nakamura S. Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity. Br. J. Nutr. 2006; 95(5): 933-938. [DOI:10.1079/BJN20061746]
31. Silberberg M, Morand C, Mathevon T, Besson C, Manach C, Scalbert A and Rémésy C. The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites. Eur. J. Nutr. 2006; 45: 88-96. [DOI:10.1007/s00394-005-0568-5]
32. Nowak M, Tryniszewski W, Sarniak A, Wlodarczyk A, Nowak PJ and Nowak D. Concentration dependence of anti- and pro-oxidant activity of polyphenols as evaluated with a light-emitting Fe2+-Egta-H2O2 system. Molecules 2022; 27(11): 3453. [DOI:10.3390/molecules27113453]
33. He L, Xing Y, Ren X, Zheng M, Yu S, Wang Y, Xiu Z and Dong Y. Mulberry leaf extract improves metabolic syndrome by alleviating Lipid accumulation in vitro and in vivo. Molecules 2022; 27(16): 5111. [DOI:10.3390/molecules27165111]
34. Foretz M, Even P and Viollet B. AMPK activation reduces hepatic Lipid content by increasing fat oxidation in vivo. Int. J. Mol. Sci. 2018; 19(19): [DOI:10.20944/preprints201808.0026.v1]
35. Owaki R, Aoki H, Toriuchi K, Inoue Y, Hayashi H, Takeshita S, Kakita H, Yamada Y and Aoyama M. AMPK activators suppress cholesterol accumulation in macrophages via suppression of the mTOR pathway. Exp. Cell. Res. 2023; 432(1): 113784. [DOI:10.1016/j.yexcr.2023.113784]
36. Zhang Z, Huang Q, Zhao D, Lian F, Li X and Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front. Endocrinol. 2023; 14: 1112363. [DOI:10.3389/fendo.2023.1112363]
37. Morales Ramos JG, Esteves Pairazamán AT, Mocarro Willis MES, Collantes Santisteban S and Caldas Herrera E. Medicinal properties of Morus alba for the control of type 2 diabetes mellitus: A systematic review. F1000Res 2021; 10: 1022. [DOI:10.12688/f1000research.55573.1]
38. Soni R, Gupta D, Gupte SS, Rathour A, Shrivastava S and Shukla S. Phytochemical screening and evaluation of antioxidant and antiproliferative potential of Morus alba (L.) leaves extracts against breast cancer cell lines. Toxicol. Int. 2023; 30(3). [DOI:10.18311/ti/2023/v30i3/33811]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb