year 24, Issue 94 (7-2025)                   J. Med. Plants 2025, 24(94): 81-101 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Susairaj Veena Anasthasia M, Mansiya C, Kannappan V, Adaikala Baskar A J. Synthesis, characterization, anti-microbial activity of silver nanoparticles, and molecular interaction studies of therapeutic agents of Pongamia pinnata (PP) and Azadirachta indica (AI). J. Med. Plants 2025; 24 (94) :81-101
URL: http://jmp.ir/article-1-3693-en.html
1- Department of Chemistry, Loyola College, Chennai-600 034, India
2- Department of Chemistry, SDNB Vaishnav College for Women, Chennai-600 044, India
3- Department of Chemistry, Presidency College, Chennai-600 005, Tamil Nadu, India.
4- 1Department of Chemistry, Loyola College, Chennai-600 034, India , justin@loyolacollege.edu
Abstract:   (32 Views)
Background: Antimicrobial activity has been reported against a range of bacteria, including multidrug-resistant strains for silver nanoparticles (AgNPs) due to penetration of NPs into the cell. AgNPs can be used in combination with other antibacterial agents to create a synergistic effect. Objective: The present work aims at the preparation of AgNPs in methanol extracts of the dried bark powder of two medicinally important plants, viz., Pongamiapinnata (PP) and Azadirachtaindica (AI) and their therapeutic uses. Method: UV-visible, FTIR spectral techniques and SEM images were used to characterize the NPs. These bio-NPs were tested for this response against mycobacteria such as Streptomycin and Fluconazole, viruses, bacteria, and fungi. Results: Antibacterial activity, antifungal activity and detailed molecular interaction between the therapeutic constituents of PP and AI against Human Mixtard Insulin (HMI) and Histamine were studied by in silico docking analysis. The antimicrobial studies of both PP and AI yielded positive results in our attempt to investigate the mycobacterial study against two human pathogenic organisms. Conclusion: Extensive in-silico docking study showed that the decreasing order of non-covalent interactions of four therapeutic components is Isopongachromene > Karanjin > Quercetin > Azadirachtin against Insulin and Isopongachromene > Azadirachtin > Karanjin > Quercetin against Histamine.  
Full-Text [PDF 1839 kb]   (12 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2024/07/2 | Accepted: 2025/06/24 | Published: 2025/07/1

References
1. Gupta A, Naraniwal M and Kothari V. Modern extraction methods for preparation of bioactive plant extracts. Inter. J. Appl. Nat. Sci. 2012; 1(1): 8-26. [DOI:10.1186/1746-4811-8-26]
2. Sheel R, Nisha K and Kumar J. Preliminary Phytochemical screening of methanolic extract of Clerodendronin fortunatum. J. App. Chem. 2014; 2278-5736; 7: 10-13. [DOI:10.9790/5736-07121013]
3. Fitzgerald M, Heinrich M and Booker A. Medicinal plant analysis: A historical and regional discussion of emergent complex techniques. Front Pharmacol. 2020; 10: 1480-1487. [DOI:10.3389/fphar.2019.01480]
4. Gupta A, Naraniwal M and Kothari V. Modern extraction methods for preparation of bioactive plant extracts. Inter. J. Appl. Nat. Sci. 2012; 1(1): 8-26. [DOI:10.1186/1746-4811-8-26]
5. Balandrin MF, Klocke JA, Wurtele ES and Bollinger WH. Natural plant chemicals: sources of industrial and medicinal materials. Science. 1985; 228(4704): 1154-60. [DOI:10.1126/science.3890182]
6. Houghton PJ and Raman A. Laboratory Handbook. Fractionation of Natural Extracts. Chapman and Hall. London, UK, 1998, 39-47. [DOI:10.1007/978-1-4615-5809-5]
7. Mutalib LY and Naqishbandi AM. Antibacterial and phytochemical study of Iraqi Salvia officinalis leave extracts. Iraqi J. Pharm. Sci. 2012; 21(1) 93-97. [DOI:10.31351/vol21iss1pp93-97]
8. Khan M, Wassilew S.W, Schmutterer H and Asher K. R. S. Natural Pesticides from the Neem Tree and Other Tropical Plants, GTZ, Eschborn, 1987, 645-650.
9. Sasidharan S, Chen Y, Saravanan D, Sundram MK and Latha L. Extraction, isolation and characterization of bioactive compounds from plants' extracts. Afr. J. Tradit. Complement. Altern. Med. 2011; 8(1): 1-10. [DOI:10.4314/ajtcam.v8i1.60483]
10. Fabricant D. S and Farnsworth N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001; 109: 69-75. [DOI:10.1289/ehp.01109s169]
11. Duraipandiyan V, Ayyanar M and Ignacimuthu S. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement. Altern. Med. 2006; 6: 35-42. [DOI:10.1186/1472-6882-6-35]
12. Cos P, Vlietinck AJ. Dirk DV and Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro 'proof-of-concept'. J. Ethnopharmacol. 2006; 106(3): 290-302. [DOI:10.1016/j.jep.2006.04.003]
13. Dahiru D, Onubiyi J. A and Umaru H. A. Phytochemical screening and antiulcerogenic effect of Moringa oleifera aqueous leaf extract. Afr. J. Trad. Comple. Altern. Med. 2006; 3(3): 70-75. [DOI:10.4314/ajtcam.v3i3.31167]
14. Hazra KM, Roy RN, Sen SK and Laskar S. Isolation of antibacterial pentahydroxy flavones from the seeds of Mimusops elengi Linn. Afr. J. Biotech. 2007; 6(12): 18: 1446-1449.
15. Parekh J, Karathia N and Chanda S. Evaluation of antibacterial activity and phytochemical analysis of Bauhinia variegata L. bark. Afr. J. Biomed. Res. 2006; 9(1): 53-56. [DOI:10.4314/ajbr.v9i1.48773]
16. Velusamy P, Das J, Pachaiappan R, Vaseeharan B and Pandian K. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Indus. Crops and Prod. 2015; 66: 103-109. [DOI:10.1016/j.indcrop.2014.12.042]
17. Narayanan KB and Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Sci. 2010; 156: 1-13. [DOI:10.1016/j.cis.2010.02.001]
18. Velusamy P, Kumar GV, Jeyanthi V, Das J and Pachaiappan R. Bio-Inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol. Res. 2016; 32(2): 95-102. [DOI:10.5487/TR.2016.32.2.095]
19. Bawskar M, Chandrakant S, Gaikwad S, Avinash I, Rathod D, Gade A, Duran N, D. Marcato P and Rai M. A New Report on Mycosynthesis of Silver Nanoparticles by Fusarium culmorum. Current Nanoscience 2010; 6(4): 376-380. [DOI:10.2174/157341310791658919]
20. Ouda SM. Antifungal Activity of Silver and Copper nanoparticles on two plant pathogens. Res. J. Microbio. 2014; 9(1): 34-42. [DOI:10.3923/jm.2014.34.42]
21. Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Kong P and Liu H. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour. Technol. 2012; 103(1): 273-281. [DOI:10.1016/j.biortech.2011.09.118]
22. Kamiar Zomorodian, Seyedmohammad Pourshahid, Arman Sadatsharifi, Pouyan Mehryar, Keyvan Pakshir, Mohammad Javad Rahimi, Ali Arabi Monfared. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species. Biomed. Res. Int 2016; 5435397. [DOI:10.1155/2016/5435397]
23. Padalia H, Moteriya P and Chanda S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem. 2014; 8(5): 732-741. [DOI:10.1016/j.arabjc.2014.11.015]
24. Pandikumar P, Chellappandian M, Mutheeswaran S and Ignacimuthu S. Consensus of local knowledge on medicinal plants among traditional healers in Mayiladumparai block of Theni District, Tamil Nadu, Ind. J. Ethnopharmacol. 2011; 134(2): 354-62. [DOI:10.1016/j.jep.2010.12.027]
25. Parashar U. K, Saxena P. S, Anchal Srivastava. Bio-inspired synthesis of silver nanoparticles. Digest J. Nanomat. and Biostructures. 2009; 4(1): 159-166.
26. Pileni M P. Nanosized particles made in colloidal assemblies. American Chemical Society, 1997; Langmuir. 13: 3266-3276. [DOI:10.1021/la960319q]
27. Bendigeri S, Das G, Shrman K, Kumar S, Khare R. K, Sachan S and Saiyam R. Phytochemical analysis of Saraca asoca bark and Azadirachta indica seeds. Inter. J. Chem. Studies. 2019; 7(4): 126-131.
28. Owoseni, Abimbola A, Ayanbamiji T. A, Ajayi, Yejide O and Ewegbenro Ikeoluwa B. Antimicrobial and phytochemical analysis of leaves and bark extracts from Bridelia ferruginea. African J. Biotechnol. 2010; 9(7): 1031-1036. [DOI:10.5897/AJB09.1072]
29. Küçükgüzel G, Kocatepe A, De Clercq E, n Şahin F and Güllüce M. Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide. Euro. J. Med. Chem. 2006; 41(3): 353-359. [DOI:10.1016/j.ejmech.2005.11.005]
30. Tiwari P, Kumar B, Kaur M, Kaur G and Kaur H. Phytochemical screening and Extraction: A Review. International Pharmaceutica Sciencia. 2011; 1(1): 98-108.
31. Taba P, Parmitha N. Kasim S. Sintesis nanopartikel perak menggunakan ekstrak daun salam (Syzygium polyanthum) sebagai bioreduktor dan uji aktivitasnya sebagai antioksidan. Indo. J. Chem. Res. 2019; 7(1): 51-60. [DOI:10.30598//ijcr.2019.7-ptb]
32. Baskar JA, Kulanthaisamy A, Singh DP and Kan-nappan V. Assessing non-covalent interaction between insulin and some antibiotics in aqueous solution through ultrasonic studies and in silico docking analysis. J. Mol. Liq. 2016; 224: 1131-1141. [DOI:10.1016/j.molliq.2016.10.051]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb