year 23, Issue 92 (11-2024)                   J. Med. Plants 2024, 23(92): 83-97 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghaei F, Shokrpour M, Nazeri V, Shaltouki-Rizi M. Interspecific hybridization in Thymus species: molecular and morphological characterization. J. Med. Plants 2024; 23 (92) :83-97
URL: http://jmp.ir/article-1-3692-en.html
1- Department of Horticultural Science, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2- Department of Horticultural Science, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran , shokrpour.majid@gmail.com
3- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, Indiana, USA
Abstract:   (115 Views)
Background: Thyme is a famous medicinal plant from the Lamiaceae family, which is grown in the wild throughout Iran and has one of the world's top ten essential oils. Objective: In this study, four species of the Thymus genus including T. lancifolius, T. daenensis, T. vulgaris, T. kotschyanus were crossed. Out of about 2,000 crosses, 70 seeds were obtained. Molecular and morphological assessments were done on hybrid seeds. Parents and hybrids were compared in terms of some morphological traits. Methods: DNA from leaf samples of both parents and hybrids were extracted. SSR markers including 23 pairs of primers and ISSR markers with 20 primers were used for hybrid identification. Out of 23 primers used for SSR analysis, five primers yielded scorable amplified products for hybrids in their respective parental lines. Results: Stem length in hybrids increased, and internode length decreased. Primer LT12, with 66.66% identification, was introduced as the best primer for hybrid identification. Also, out of 19 ISSR primers, five primers confirmed hybrids and their parents. Primer ISCS43 with 100% ability to identify hybrids was introduced as the best primer. Conclusion: In general, all hybrids characterized by morphological characters were supported by the ISSR and SSR data. These results indicate that ISSR and SSR data will be valuable tools to verify hybrids.
Full-Text [PDF 638 kb]   (43 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2024/06/30 | Accepted: 2025/03/4 | Published: 2024/11/30

References
1. Sunar S, Aksakal O, Yildirim N, AĞAR G, GÜLLÜCE M and Sahin F. Genetic diversity and relationships detected by FAME and RAPD analysis among Thymus species growing in eastern Anatolia region of Turkey. Rom. Biotechnol. Lett. 2009; 14(2): 4313-4318.
2. Hamideh J, Mohsen Hesamzadeh Hejazi S and Sh Babayev M. Comparison of karyotypic triats of Thymus species in Iran. Sch. Res. Libr. Ann. Biol. Res. 2013; 4(1): 199-208.
3. Huang SC, Tsai CC and Sheu CS. Genetic analysis of Chrysanthemum hybrids based on RAPD molecular markers. Bot. Bull. Acad. Sin. 2000; 41(4): 257-62.
4. Jamzad Z. Thymus and Satureja species of Iran. Firstth publication. Research Institute of Forests and Rangelands Publishers. 2009, pp: 171.
5. Abedini S, Sahebkar A and Hassanzadeh-Khayyat M. Chemical composition of the essential oil of Thymus vulgaris L. grown in Iran. J. Essent. Oil-Bear. Plants 2014; 17(3): 538-43. [DOI:10.1080/0972060X.2014.935044]
6. Federici S, Galimberti A., Bartolucci F, Bruni I, De Mattia F, Cortis P and Labra M. DNA barcoding to analyse taxonomically complex groups in plants: The case of Thymus (Lamiaceae). Bot. J. Linn. Soc. 2013; 171(4): 687-99. [DOI:10.1111/boj.12034]
7. Sostaric I, Liber Z, Grdisa M, Marin PD, Dajic Stevanovic Z and Satovic Z. Genetic diversity and relationships among species of the genus Thymus L. (section Serpyllum). Flora Morphol. Distrib. Funct. Ecol. Plants. 2012; 207(9): 654-61. [DOI:10.1016/j.flora.2012.06.018]
8. Tovar-Sánchez E, Rodríguez-Carmona F, Aguilar-Mendiola V, Mussali-Galante P, López-Caamal A and Valencia-Cuevas L. Molecular evidence of hybridization in two native invasive species: Tithonia tubaeformis and T. rotundifolia (Asteraceae) in Mexico. Plant Syst. Evol. 2012; 298(10): 1947-59. [DOI:10.1007/s00606-012-0693-6]
9. Khadivi-Khub A and Soorni A. Comprehensive genetic discrimination of Leonurus cardiaca populations by AFLP, ISSR, RAPD and IRAP molecular markers. Mol. Biol. Rep. 2014; 41(6): 4007-16. [DOI:10.1007/s11033-014-3269-4]
10. Yuan JH, Cheng FY and Zhou SL. Hybrid origin of Paeonia × yananensis revealed by microsatellite markers, chloroplast gene sequences, and morphological characteristics. Int. J. Plant. Sci. 2010; 171(4): 409-420. [DOI:10.1086/651228]
11. Kannan U, Altaher AF, Båga M, Hucl P and Chibbar RN. Utilization of microsatellite markers to assess hybridity and genetic identity of canary seed (Phalaris canariensis L.) genotypes. Can. J. Plant Sci. 2017; 97(5): 835-841. [DOI:10.1139/CJPS-2016-0129]
12. Shaltouki M, Nazeri V, Shokrpour M, Tabrizi L and Aghaei F. Phenotypic and genotypic assessment of some iranian Ziziphora clinopodioides Lam. ecotypes. J. Agr. Sci. Tech. 2021; 23(3): 645-660.
13. R adosavljević I, Satovic Z, Jakse J, Javornik B, Greguraš D, Jug-Dujaković M and Liber Z. Development of new microsatellite markers for Salvia officinalis L. and its potential use in conservation-genetic studies of narrow endemic Salvia brachyodon vandas. IJMS. 2012; 13(9): 12082-93. [DOI:10.3390/ijms130912082]
14. Yaghini H, Sabzalian MR, Rahimmalek M, Garavand T, Maleki A and Mirlohi A. Seed set in inter specific crosses of male sterile Mentha spicata with Mentha longifolia. Euphytica. 2020; 216: 46. 1-14. [DOI:10.1007/s10681-020-2578-z]
15. Dirmenci T, Özcan T, Yazici T, Arabaci T and Martin E. Morphological, cytological, palynological and molecular evidence on two new hybrids from Turkey: An example of homoploid hybridization in origanum (lamiaceae). Phytotaxa. 2018; 371(3): 145-67. [DOI:10.11646/phytotaxa.371.3.1]
16. Arabaci T, Çelenk S, Özcan T, Martin E, Yazici T, Açar M, and Dirmenci T. Homoploid hybrids of Origanum (Lamiaceae) in Turkey: morphological and molecular evidence for a new hybrid. Plant Biosyst. 2021; 155(3): 470-82. [DOI:10.1080/11263504.2020.1762777]
17. Capuzzo A and Maffei ME. Molecular fingerprinting of peppermint (Mentha piperita) and some Mentha hybrids by sequencing and RFLP analysis of the 5S rRNA Non-Transcribed Spacer (NTS) region. Plant Biosyst. 2016; 150(2): 236-43. [DOI:10.1080/11263504.2014.969355]
18. Gobert V, Moja S, Colson M and Taberlet P. Hybridization in the section Mentha (Lamiaceae) inferred from AFLP markers. Am. J. Bot. 2002; 89(12): 2017-23. [DOI:10.3732/ajb.89.12.2017]
19. Shafie MSB, Hasan SMZ, Zain AM and Shah RM. RAPD and ISSR markers for comparative analysis of genetic diversity in wormwood capillary (Artemisia capillaris) from Negeri Sembilan, Malaysia. J. Med. Plants Res. 2011; 5(18): 4426-4437.‏
20. Song Z, Li X, Wang H and Wang J. Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP. Genetica. 2010; 138(2): 241-9. [DOI:10.1007/s10709-009-9416-5]
21. Liu J, Wang L, Geng Y, Wang Q, Luo L and Zhong Y. Genetic diversity and population structure of Lamiophlomis rotata (Lamiaceae), an endemic species of Qinghai-Tibet Plateau. Genetica. 2006; 128(1-3): 385-94. [DOI:10.1007/s10709-006-7517-y]
22. Yousefi V, Najaphy A, Zebarjadi A and Safari H. Molecular characterization of Thymus species using ISSR markers. J. Anim. Plant Sci. 2015; 25(4).
23. Trindade H, Costa MM, Lima SB, Pedro LG, Figueiredo AC and Barroso JG. A combined approach using RAPD, ISSR and volatile analysis for the characterization of Thymus caespititius from Flores, Corvo and Graciosa islands (Azores, Portugal). Biochem. Syst. Ecol. 2009; 37(5): 670-7. [DOI:10.1016/j.bse.2009.10.006]
24. Hadian J, Karami A, Azizi A and Khadivi-Khub A. Ubiquitous genetic diversity among and within wild populations of Satureja rechingeri assessed with ISSR markers. Plant Syst. Evol. 2015; 301(3): 923-30. [DOI:10.1007/s00606-014-1126-5]
25. Dajić-Stevanović Z, Šoštarić I, Marin PD, Stojanović D and Ristić M. Population variability in Thymus glabrescens Willd. from Serbia: Morphology, anatomy and essential oil composition. Arch. Biol. Sci. 2008; 60(3): 475-83. [DOI:10.2298/ABS0803475D]
26. López-Pujol J, Bosch M, Simon J and Blanché C. Allozyme diversity in the tetraploid endemic Thymus loscosii (Lamiaceae). Ann. Bot. 2004; 93(3): 323-32. [DOI:10.1093/aob/mch039]
27. Shaltouki Rizi M and Mohammadi M. Breeding crops for enhanced roots to mitigate against climate change without compromising yield. Rhizosphere. 2023; 26: 100702. [DOI:10.1016/j.rhisph.2023.100702]
28. Lichtenthaler HK and Buschmann C. Chlorophylls and carotenoids: measurement and characterization by UV‐VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001; 1(1): F4-3.‏ [DOI:10.1002/0471142913.faf0403s01]
29. Doyle J.J, Doyle J.L and Bailey Hortorium LH. Isolation of plant DNA from fresh tissue. Focus, 1990; 12(1): 13-15.
30. Akhare A, Sakhare SB, Kulwal P, Dhumale DB and Kharkar A. RAPD profile studies in Sorghum for identification of hybrids and their parents Pawan Kulwal. IJIB. 2008; 3(1): 18-24.
31. Ben El Hadj Ali I, Guetat A and Boussaid M. Chemical and genetic variability of Thymus algeriensis Boiss. et Reut. (Lamiaceae), a North African endemic species. Ind. Crops Prod. 2012; 40: 277-284. [DOI:10.1016/j.indcrop.2012.03.021]
32. Karaca M, İnce AG, Aydin A, Elmasulu SY and Turgut K. Microsatellites for genetic and taxonomic research on thyme (Thymus L.). Turkish J. Biol. 2015; 39(1): 147-59. [DOI:10.3906/biy-1406-20]
33. Sarfaraz D, Rahimmalek M, Saeidi G and Sabzalian MR. Genetic relations among and within wild and cultivated Thymus species based on morphological and molecular markers, 3 Biotech. 2020; 10(7): 1-13.‏ [DOI:10.1007/s13205-020-02274-6]
34. Simmonds NW. Principles of crop improvement. 1979. Longman, London UK.
35. Liang Q, Shang L, Wang Y and Hua J. Partial dominance, overdominance and epistasis as the genetic basis of heterosis in upland cotton (Gossypium hirsutum L.). PLoS One. 2015; 10(11): e0143548. [DOI:10.1371/journal.pone.0143548]
36. Li X, Shahzad K, Guo L, Qi T, Zhang X, Wang H and Xing C. Using yield quantitative trait locus targeted SSR markers to study the relationship between genetic distance and yield heterosis in upland cotton (Gossypium hirsutum). Plant Breed. 2019; 138(1): 105-13. [DOI:10.1111/pbr.12668]
37. Rauf S and Nazir S. Combining ability and heterosis in Gossypium hirsutum L. Int. J. Agri. Biol. 2005; 7(1): 109-113.
38. Zhu X, Ainijiang, Zhang Y, Guo W and Zhang TZ. Relationships between differential gene expression and heterosis in cotton hybrids developed from the foundation parent CRI-12 and its pedigree-derived lines. Plant Sci. 2011; 180(2): 221-7. [DOI:10.1016/j.plantsci.2010.08.011]
39. Narendrula R, and Nkongolo K. Genetic variation in Picea mariana × P. rubens hybrid populations assessed with ISSR and RAPD markers. AJPS. 2012; 3(6): 731-737.‏ [DOI:10.4236/ajps.2012.36088]
40. Lin X. C, Lou Y. F, Liu J, Peng J. S, Liao G. L and Fang W. Crossbreeding of Phyllostachys species (Poaceae) and identification of their hybrids using ISSR markers. Genet. Mol. Res. 2010; 9(3): 1398-1404.‏ [DOI:10.4238/vol9-3gmr855]
41. Shasany A. K, Darokar M. P, Dhawan S, Gupta A. K, Gupta S, Shukla A. K and Khanuja S. P. Use of RAPD and AFLP markers to identify inter- and intraspecific hybrids of Mentha. J. Hered. 2005; 96(5): 542-549.‏ [DOI:10.1093/jhered/esi091]
42. Aneva I, Zhelev P, Bonchev G, Boycheva I, Simeonova S and Kancheva D. DNA barcoding study of representative Thymus species in Bulgaria. Plants. 2022; 11(3): 270.‏ [DOI:10.3390/plants11030270]
43. Sharma M, Dolkar D, Salgotra R. K, Sharma D, Singh P. A and Gupta S. K. Molecular marker assisted confirmation of hybridity in Indian mustard (Brassica juncea L.). Int. J. Curr. Microbiol. Appl. Sci. 2018; 7(9): 894-900. [DOI:10.20546/ijcmas.2018.709.107]
44. Le S, Harwood CE, Rod Griffin A, Do SH, Ha TH and Ratnam W and Vaillancourt R. Using SSR markers for hybrid identification and resource management in Vietnamese Acacia breeding programs. Tree Genet. Genomes. 2017; 13(5): 1-12. [DOI:10.1007/s11295-017-1184-2]
45. Conceição L. D. H. C. S. D, Souza M. M, Belo G. D. O, Santos S. F. D and Freitas J. C. O. D. Hybridization among wild passionflower species. Braz. J. Biol. 2011; 34(2): 237-240.‏ [DOI:10.1590/S0100-84042011000200011]
46. Nasab M. Z, Hejazi S. M. H, Bihamta M. R, Mirza M and Naderi-Shahab M. A. Assessment of karyotypical variation among 16 populations of Thymus daenensis Celak and Thymus kotschyanus Boiss. species in Iran. Afr. J. Biotechnol. 2012; 11(5): 1028.‏ [DOI:10.5897/AJB11.2441]
47. Lavania UC and Srivastava S. A simple parameter of dispersion index that serves as an adjunct to karyotype asymmetry. J. Biosci. 1992; 17(2): 179-182. [DOI:10.1007/BF02703503]
48. Liu G, Li Z and Bao M. Colchicine-induced chromosome doubling in platanus acerifolia and its effect on plant morphology. Euphytica. 2007; 157: 145-54. [DOI:10.1007/s10681-007-9406-6]
49. Rustaiee AR, Yavari A, Nazeri V, Shokrpour M, Sefidkon F and Rasouli M. Genetic diversity and chemical polymorphism of some Thymus species, Chem. Biodiver. 2013; 10(6): 1088-1098. [DOI:10.1002/cbdv.201200020]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb