year 24, Issue 93 (5-2025)                   J. Med. Plants 2025, 24(93): 12-26 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Wijaya S, Setiawan H K. Antioxidant and acetylcholinesterase inhibitory activities of Indonesian cultivated medicinal plants. J. Med. Plants 2025; 24 (93) :12-26
URL: http://jmp.ir/article-1-3690-en.html
1- Faculty of Pharmacy Widya Mandala Surabaya Catholic University Indonesia, Jalan Kalisari Selatan 1 Surabaya 60112 East Java Indonesia , sumi@ukwms.ac.id
2- Faculty of Pharmacy Widya Mandala Surabaya Catholic University Indonesia, Jalan Kalisari Selatan 1 Surabaya 60112 East Java Indonesia
Abstract:   (39 Views)
Background: Throughout many decades, researchers all around the world still extensively search for treatment strategies for Alzheimer's disease. Dispute the small number of medicines that can be used for the treatment, the side effects, and the only symptomatic treatments of the drug, which makes the necessity of finding new sources of drugs from plant sources a critical movement. Objective: In this research, we investigate the potential of 33 traditional medicines plants from Indonesia for their acetylcholinesterase inhibitor and antioxidant properties. Methods: The inhibitory potential of acetylcholinesterase was carried out using spectrophotometry using acetylcholine as a substrate and antioxidant activity was measured using the FRAP method. Results: The results indicate that among the 33 plants, only seven plants with an acetylcholinesterase inhibitor (AChEI). Those plants are Chromolaena odorata, Mikania scandes, Piper cubeba, Peperomia pellucida, Persea americana, Lycium barbarum and Phyllanthus niruri.  All the plant samples showed remarkable antioxidant potency with the range of value 4.11 – 52.65 mg/mL. Conclusions: Persea americana (Lauraceae) had the greatest AChEI with a value of 4.11 mg/mL, meanwhile Piper cubeba (Piperaceae) has the highest potency in scavenging free radicals with an FRAP Value of 10.89 mg/mL. There was no correlation between AChEI and Antioxidant potency.
Full-Text [PDF 516 kb]   (37 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2024/06/24 | Accepted: 2025/04/30 | Published: 2025/05/14

References
1. Moreta MPG, Burgos-Alonso N, Torrecilla M, Marco-Contelles J and Bruzos-Cidón C. Efficacy of acetylcholinesterase inhibitors on cognitive function in alzheimer's disease. Review of Reviews. Biomedicines. 2021; 9(11): 1689. [DOI:10.3390/biomedicines9111689]
2. World Health Organization. Towards a dementia plan: a WHO guide [Internet]. France: WHO; 2018, 178.
3. Ahmed S, Khan ST, Zargaham MK, Khan AU, Khan S, Hussain A, Uddin J, Khan A and Al-Harrasi A. Potential therapeutic natural products against Alzheimer's disease with reference of acetylcholinesterase. Biomedicine & Pharmacotherapy. 2021; 139: 111609. [DOI:10.1016/j.biopha.2021.111609]
4. Balkis A, Tran K, Lee YZ and Ng K. Screening flavonoids for inhibition of acetylcholinesterase identified baicalein as the most potent inhibitor. Journal of Agricultural Science. 2015; 7(9): 26-35. [DOI:10.5539/jas.v7n9p26]
5. Niu H, Álvarez-Álvarez I, Guillén-Grima F, Aguinaga-Ontoso I. Prevalence and incidence of alzheimer's disease in Europe: A meta-analysis. Neurología (English Edition). 2017; 32(8): 523-32. [DOI:10.1016/j.nrleng.2016.02.009]
6. Xiang CP, Han JX, Li XC, Li YH, Zhang Y, Chen L, Qu Y, Hao C-Y, Li H-Z, Yang C-R, Zhao S-J and Xu M. Chemical composition and acetylcholinesterase inhibitory activity of essential oils from Piper species. J. Agric. Food Chem. 2017; 65(18): 3702-10. [DOI:10.1021/acs.jafc.7b01350]
7. Fiest KM, Roberts JI, Maxwell CJ, Hogan DB, Smith EE, Frolkis A, Cohen A, Kirk A, Pearson D, Pringsheim T, Venegas-Torres A and Jetté N. The prevalence and incidence of dementia due to alzheimer's disease: a systematic review and meta-analysis. C.J.N.S. 2016; 43(Suppl 1): S51-82. [DOI:10.1017/cjn.2016.36]
8. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W and Ferri CP. The global prevalence of dementia: A systematic review and meta-analysis. Alzheimer's & Dementia. 2013; 9(1): 63-75.e2. [DOI:10.1016/j.jalz.2012.11.007]
9. Santos TC dos, Gomes TM, Pinto BAS, Camara AL, Paes AM de A. Naturally occurring Acetylcholinesterase inhibitors and their potential use for Alzheimer's disease therapy. Frontiers in Pharmacology. 2018; 9(1192): 1-14. [DOI:10.3389/fphar.2018.01192]
10. Fricker M, Tolkovsky AM, Borutaite V, Coleman M and Brown GC. Neuronal cell death. Physiol. Rev. 2018; 98(2): 813-80. [DOI:10.1152/physrev.00011.2017]
11. Ramos-Cejudo J, Wisniewski T, Marmar C, Zetterberg H, Blennow K, Leon MJ de Fossati S. Traumatic brain injury and alzheimer's disease: The Cerebrovascular link. eBioMedicine. 2018; 28: 21-30. [DOI:10.1016/j.ebiom.2018.01.021]
12. Tublin JM, Adelstein JM, del Monte F, Combs CK, Wold LE. Getting to the heart of Alzheimer disease. Circulation Res. 2019; 124(1): 142-9. [DOI:10.1161/CIRCRESAHA.118.313563]
13. Ruz C, Alcantud JL, Vives Montero F, Duran R, Bandres-Ciga S. Proteotoxicity and neurodegenerative diseases. Int. J. Mol. Sci. 2020; 21(16): 5646. [DOI:10.3390/ijms21165646]
14. van Enkhuizen J, Janowsky DS, Olivier B, Minassian A, Perry W, Young JW and Geyer MA. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited. Eur. J. Pharmacol. 2015; 753: 114-26. [DOI:10.1016/j.ejphar.2014.05.063]
15. Walczak-Nowicka ŁJ and Herbet M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. IJMS. 2021; 22(17). 9290. [DOI:10.3390/ijms22179290]
16. Ademosun AO, Oboh G, Bello F and Ayeni PO. Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and butyrylcholinesterase activities. J. Evid-Based Integr. Med. 2015; 21(4): NP11-7. [DOI:10.1177/2156587215610032]
17. Ehret MJ and Chamberlin KW. Current practices in the treatment of alzheimer disease: where is the evidence after the phase III trials? Clin. Ther. 2015; 37(8): 1604-16. [DOI:10.1016/j.clinthera.2015.05.510]
18. Kaufmann D, Kaur Dogra A, Tahrani A, Herrmann F and Wink M. Extracts from traditional chinese medicinal plants inhibit acetylcholinesterase, a known alzheimer's disease target. Molecules. 2016; 21(9): 1161. [DOI:10.3390/molecules21091161]
19. Khan H, Marya, Amin S, Kamal MA and Patel S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother. 2018; 101: 860-70. [DOI:10.1016/j.biopha.2018.03.007]
20. Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R and Amenta F. Efficacy of acetylcholinesterase inhibitors in alzheimer's disease. Neuropharmacol. 2021; 190: 108352. [DOI:10.1016/j.neuropharm.2020.108352]
21. Murata K, Matsumura S, Yoshioka Y, Ueno Y and Matsuda H. Screening of β-secretase and acetylcholinesterase inhibitors from plant resources. J. Nat. Med. 2015; 69(1): 123-9. [DOI:10.1007/s11418-014-0859-3]
22. Yan X, Tang J, Passos C dos S, Nurisso A, Simões-Pires CA, Ji M, Lou H and Fan P. Characterization of lignanamides from Hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. JAFC. 2015; 63(49): 10611-9. [DOI:10.1021/acs.jafc.5b05282]
23. Zemek F, Drtinova L, Nepovimova E, Sepsova V, Korabecny J, Klimes J and Kuca L. Outcomes of alzheimer's disease therapy with acetylcholinesterase inhibitors and memantine. Expert. Opin Drug Saf. 2014; 13(6): 759-74.
24. Masondo NA, Stafford GI, Aremu AO and Makunga NP. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer's disease treatment. South African Journal of Botany. 2019; 120: 39-64. [DOI:10.1016/j.sajb.2018.09.011]
25. Ranjan N and Kumari M. Acetylcholinesterase inhibition by medicinal plants: A review. Annals of Plant Sciences. 2017; 6(6): 1640-4. [DOI:10.21746/aps.2017.06.003]
26. Ajayi OS, Aderogba MA, Obuotor EM and Majinda RRT. Acetylcholinesterase inhibitor from Anthocleista vogelii leaf extracts. Journal of Ethnopharmacol. 2019; 231: 503-6. [DOI:10.1016/j.jep.2018.11.009]
27. Ali Hassan H, E. Allam A, H. Abu-Baih D, A. Mohamed MF, Ramadan Abdelmohsen U, Shimizu K, Y. Desoukey S, M. Hayallah A, A. Elrehany M, M. Mohamed Kh and S. Kamel M. Isolation and characterization of novel acetylcholinesterase inhibitors from Ficus benghalensis L. leaves. RSC Advances. 2020; 10(60): 36920-9. [DOI:10.1039/D0RA06565J]
28. Ali-Shtayeh MS, Jamous RM, Zaitoun SYA and Qasem IB. In-vitro screening of acetylcholinesterase inhibitory activity of extracts from Palestinian indigenous flora in relation to the treatment of Alzheimer's disease. Functional Foods in Health and Disease. 2014; 4(9): 381. [DOI:10.31989/ffhd.v4i9.149]
29. Cortes N, Posada-Duque RA, Alvarez R, Alzate F, Berkov S, Cardona-Gómez GP and Osorio E. Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: A comparative study. Life Sciences. 2015; 122: 42-50. [DOI:10.1016/j.lfs.2014.12.011]
30. Wijaya S, Nee TK, Jin KT and Wiart C. Antibacterial, Antioxidant, Anti-inflammatory, and Anti-acethylcholinesterase Activity of Mikania scandens (L.) Willd (Climbing Hempvine). Asian J. Pharmacog. 2020; 4(1): 15-24.
31. Nurcholis W, Sya'bani Putri DN, Husnawati H, Aisyah SI and Priosoeryanto BP. Total flavonoid content and antioxidant activity of ethanol and ethyl acetate extracts from accessions of Amomum compactum fruits. Annals of Agricultural Sciences. 2021; 66(1): 58-62. [DOI:10.1016/j.aoas.2021.04.001]
32. Michel J, Abd Rani NZ and Husain K. A review on the potential use of medicinal plants from asteraceae and Lamiaceae plant family in cardiovascular diseases. Front. Pharmacol. 2020; 11. [DOI:10.3389/fphar.2020.00852]
33. Barral-Martinez M, Garcia-Oliveira P, Nuñez-Estevez B, Silva A, Finimundy TC, Calhelha R, Nenadic M, Sokovic M, Barroso F, Simal-Gandara J, R. Ferreira ICF, Barros L and Prieto MA. Plants of the family Asteraceae: evaluation of biological properties and identification of phenolic compounds. Chemistry Proceedings. 2021; 5(1): 51. [DOI:10.3390/CSAC2021-10486]
34. Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, Zhang T, Chen X, Huang J, Sun X, Li Q, Fang Sh, Xu J, Yao Zh and Gu H. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of alzheimer's disease. Neurobiology of Aging. 2015; 36(5): 1792-807. [DOI:10.1016/j.neurobiolaging.2015.02.002]
35. Orhan IE, Gulyurdu F, Kupeli Akkol E, Senol FS, Arabaci Anul S, Tatli II. Anticholinesterase, antioxidant, analgesic and anti-inflammatory activity assessment of Xeranthemum annuum L. and isolation of two cyanogenic compounds. Pharmaceutical Biology. 2016; 54(11): 2643-51. [DOI:10.1080/13880209.2016.1177092]
36. Liu J, Hua J, Qu B, Guo X, Wang Y, Shao M and Luo Sh. Insecticidal Terpenes from the essential oils of Artemisia nakaii and their inhibitory effects on acetylcholinesterase. Front. Plant Sci. 2021; 12. 2021. [DOI:10.3389/fpls.2021.720816]
37. Trendafilova A, Ivanova V, Rangelov M, Todorova M, Ozek G, Yur S, Ozek T, Aneva I, Veleva R, Moskova-Doumanova V, Doumanov J and Topouzova-Hristova T. Caffeoylquinic acids, cytotoxic, antioxidant, acetylcholinesterase and tyrosinase enzyme inhibitory activities of six Inula species from Bulgaria. Chemistry & Biodiversity. 2020; 17(4): e2000051. [DOI:10.1002/cbdv.202000051]
38. Marques AM and Kaplan MAC. Active metabolites of the genus Piper against Aedes aegypti: Natural alternative sources for dengue vector control. Universitas Scientiarum. 2015; 20(1): 61-82. [DOI:10.11144/Javeriana.SC20-1.amgp]
39. Ruslan NB, Amin IM, Hasani NAH, Ahmad VN, Aris F, Khor GH. In vitro cytotoxic evaluation and apoptosis effects of dillapiole in human nasal squamous cell carcinoma. Journal Teknologi. 2021; 83(5): 93-9. [DOI:10.11113/jurnalteknologi.v83.17077]
40. Choi SJ, Oh SS, Kim CR, Kwon YK, Suh SH, Kim JK, Park GG, Son S-Y and Shin D-H. Perilla frutescens extract ameliorates acetylcholinesterase and trimethyltin chloride-induced neurotoxicity. J. Med. Food. 2016; 19(3): 281-9. [DOI:10.1089/jmf.2015.3540]
41. Dung HV, Cuong TD, Chinh NM, Quyen D, Kim JA, Byeon JS, Woo MH, Choi JS and Min BS. Compounds from the aerial parts of Piper bavinum and their anti-cholinesterase activity. Arch. Pharm. Res. 2015; 38(5): 677-82. [DOI:10.1007/s12272-014-0432-3]
42. Senol FS, Ślusarczyk S, Matkowski A, Pérez-Garrido A, Girón-Rodríguez F, Cerón-Carrasco JP, den-Haan H, Peña-García J, Pérez-Sánchez H, Domaradzki K, Orhan IE. Selective in vitro and in silico butyrylcholinesterase inhibitory activity of diterpenes and rosmarinic acid isolated from Perovskia atriplicifolia Benth. and Salvia glutinosa L. Phytochem. 2017; 133: 33-44. [DOI:10.1016/j.phytochem.2016.10.012]
43. Tu Y, Zhong Y, Du H, Luo W, Wen Y, Li Q, Zhu C and Li Y. Anticholinesterases and antioxidant alkamides from Piper nigrum fruits. Nat. Prod. Res. 2016; 30(17): 1945-9. [DOI:10.1080/14786419.2015.1089243]
44. Moniruzzaman Md, Asaduzzaman Md, Hossain MdS, Sarker J, Rahman SMA, Rashid M and Rahman MM. In vitro antioxidant and cholinesterase inhibitory activities of methanolic fruit extract of Phyllanthus acidus. BMC Complementary and Alternative Medicine. 2015; 15(1): 403. [DOI:10.1186/s12906-015-0930-y]
45. Pisano MB, Cosentino S, Viale S, Spanò D, Corona A, Esposito F, Tramontano E, Montoro P, Tuberoso CIG, Medda R and Pintus F. Biological activities of aerial parts extracts of Euphorbia characias. BioMed Res. Int. 2016; 2016: e1538703. [DOI:10.1155/2016/1538703]
46. Saleem H, Ahmad I, Shahid MN, Gill MSA, Nadeem MF, Mahmood W and Rashid I. In vitro acetylcholinesterase and butyrcholinesterase inhibitory potentials of Jatropha gossypifolia plants extract. Acta Pol. Pharm. 2016; 73(2): 419-23.
47. Aljubiri SM, Elsalam EA, Hady FKAE, Radwan MO, Almansour AI and Shaker KH. In vitro acetylcholinesterase, tyrosinase inhibitory potentials of secondary metabolites from Euphorbia schimperiana and Euphorbia balsamifera. Zeitschrift für Naturforschung C. 2023; 78(5-6): 209-16. [DOI:10.1515/znc-2021-0178]
48. Wei JC, Zhang XY, Gao YN, Wang DD, He XL, Gao XX, Hu G-S, Wang A-H and Jia J-M. Euphorfinoids E-L: Diterpenoids from the roots of Euphorbia fischeriana with acetylcholinesterase inhibitory activity. Phytochem. 2021; 190: 112867. [DOI:10.1016/j.phytochem.2021.112867]
49. Wan Othman WNN, Liew SY, Khaw KY, Murugaiyah V, Litaudon M and Awang K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorg. Med. Chem. 2016; 24(18): 4464-9. [DOI:10.1016/j.bmc.2016.07.043]
50. Selly JB, Abdurrouf A and Juswono UP. Effect of Sterculia quadrifide extract R.Br. against free radical in liver organs Oreochromis niloticus due to heavy metal pollution. Natural B, Journal of Health and Environmental Sciences. 2015; 3(2): 175-81. [DOI:10.21776/ub.natural-b.2015.003.02.11]
51. Tuzimski T and Petruczynik A. Application of HPLC-DAD for In vitro investigation of acetylcholinesterase inhibition activity of selected isoquinoline alkaloids from Sanguinaria canadensis extracts. Molecules. 2021; 26(1): 230. [DOI:10.3390/molecules26010230]
52. Bendjedou H, Barboni L, Maggi F, Bennaceur M and Benamar H. Alkaloids and sesquiterpenes from roots and leaves of Lycium europaeum L. (Solanaceae) with antioxidant and anti-acetylcholinesterase activities. Natural Product Research. 2021; 35(16): 2784-8. [DOI:10.1080/14786419.2019.1666386]
53. Teixeira F, Silva AM, Delerue-Matos C, Rodrigues F. Lycium barbarum berries (Solanaceae) as source of bioactive compounds for healthy purposes: A review. IJMS. 2023; 24(5): 4777. [DOI:10.3390/ijms24054777]
54. Muchandi AA, Jadhav AS, Patil SB and Jadhav NB. Antioxidant and in vitro antidiabetic activity of methanol extract of Piper cubeba L. IRJPMS. 2018; 1(3): 1-4.
55. Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, Sebastiani F and Tattini M. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants. 2020; 9(11): 1098. [DOI:10.3390/antiox9111098]
56. Kindl M, Blažeković B, Bucar F and Vladimir-Knežević S. Antioxidant and anticholinesterase potential of six Thymus species. Evidence-Based Complementary and Alternative Medicine. 2015; 2015:e403950. [DOI:10.1155/2015/403950]
57. Mervić M, Bival Štefan M, Kindl M, Blažeković B, Marijan M and Vladimir-Knežević S. Comparative antioxidant, anti-acetylcholinesterase and anti-α-glucosidase activities of mediterranean Salvia species. Plants. 2022; 11(5): 625. [DOI:10.3390/plants11050625]
58. Cui X, Lin Q and Liang Y. Plant-derived antioxidants protect the nervous system from aging by inhibiting oxidative stress. Frontiers in Aging Neuroscience. 2020; 12. [DOI:10.3389/fnagi.2020.00209]
59. Kaster MP, Machado NJ, Silva HB, Nunes A, Ardais AP, Santana M, Baqi Y, E Müller C, Lúcia S Rodrigues A, O Porciúncula L, Fan Chen J, R Tomé Â, Agostinho P, M Canas P and A Cunha R. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc. Natl. Acad. Sci. USA. 2015; 112(25): 7833-8. [DOI:10.1073/pnas.1423088112]
60. Bush AI. The metal theory of Alzheimer's disease. J. Alzheimers Dis. 2013; 33(Suppl 1): S277-281. [DOI:10.3233/JAD-2012-129011]
61. Lee JP, Kang MG, Lee JY, Oh JM, Baek SC, Leem HH, Park D, Cho M-L and Kim H. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorganic Chem. 2019; 89: 103043. [DOI:10.1016/j.bioorg.2019.103043]
62. Kumar S and Pandey A. Phenolic content, reducing power and membrane protective activities of Solanum xanthocarpum root extracts. Vegetos: An International Journal of Plant Research. 2013; 26(1): 1-7. [DOI:10.5958/j.2229-4473.26.1.043]
63. Cao J, Xia X, Chen X, Xiao J and Wang Q. Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities. Food and Chem. Toxicol. 2013; 51: 242-50. [DOI:10.1016/j.fct.2012.09.039]
64. Ding X, Ouyang MA, Liu X and Wang RZ. Acetylcholinesterase inhibitory activities of flavonoids from the leaves of Ginkgo biloba against Brown planthopper. J. Chem. 2013; 2013(1): e645086. [DOI:10.1155/2013/645086]
65. Dzoyem JP, Nkuete AHL, Ngameni B and Eloff JN. Anti-inflammatory and anticholinesterase activity of six flavonoids isolated from Polygonum and Dorstenia species. Arch. Pharm. Res. 2017; 40(10): 1129-34. [DOI:10.1007/s12272-015-0612-9]
66. Rhee JS, Kim BM, Jeong CB, Park HG, Leung KMY, Lee YM and Lee J-S. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2013; 158(4): 216-24. [DOI:10.1016/j.cbpc.2013.08.005]
67. Chandar NB and Ganguly B. A first principles investigation of aging processes in soman conjugated AChE. Chemico-Biological Interactions. 2013; 204(3): 185-90. [DOI:10.1016/j.cbi.2013.05.013]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb