1. Yadav S, Sharma A, Nayik GA, Cooper R, Bhardwaj G, Sohal HS, Mutreja V, Kaur R, Areche FO, AlOudat M, Shaikh AM, Kovács B. and Mohamed Ahmed AE. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front Pharmacol. 2022; 13: 905755. [
DOI:10.3389/fphar.2022.905755]
2. Ni L, Chen L, Huang X, Han C, Xu J, Zhang H, Luan X, Zhao Y, Xu J, Yuan W. and Chen H. Combating COVID-19 with integrated traditional Chinese and Western medicine in China. Acta Pharm. Sin. B. 2020; 10(7): 1149-1162. [
DOI:10.1016/j.apsb.2020.06.009]
3. Li H, Matsuda H, Tsuboyama A, Munakata R, Sugiyama A and Yazaki K. Inventory of ATP-binding cassette proteins in Lithospermum erythrorhizon as a model plant producing divergent secondary metabolites. DNA Res. 2022; 29(3): dsac016. [
DOI:10.1093/dnares/dsac016]
4. Takanashi K, Nakagawa Y, Aburaya S, Kaminade K, Aoki W, Saida-Munakata Y, Sugiyama A, Ueda M, Yazaki K. Comparative Proteomic analysis of Lithospermum erythrorhizon reveals regulation of a variety of metabolic enzymes leading to comprehensive understanding of the Shikonin biosynthetic pathway. Plant Cell Physiol. 2019; 60(1): 19-28. [
DOI:10.1093/pcp/pcy183]
5. Yazaki K. Lithospermum erythrorhizon cell cultures: Present and future aspects. Plant Biotechnol. (Tokyo). 2017; 34(3): 131-142. [
DOI:10.5511/plantbiotechnology.17.0823a]
6. Auber RP, Suttiyut T, McCoy RM, Ghaste M, Crook JW, Pendleton AL, Widhalm, JR, Wisecaver JH. Hybrid de novo genome assembly of red gromwell (Lithospermum erythrorhizon) reveals evolutionary insight into Shikonin biosynthesis. Hortic Res. 2020; 7(1): 82. [
DOI:10.1038/s41438-020-0301-9]
7. An X, Zhang Y, Duan L, Jin D, Zhao S, Zhou R, Duan Y, Lian F and Tong X. The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed Pharmacother. 2021; 137: 111267. [
DOI:10.1016/j.biopha.2021.111267]
8. Oh KK and Adnan M. Revealing potential bioactive compounds and mechanisms of Lithospermum erythrorhizon against COVID-19 via network pharmacology study. Curr. Issues Mol. Biol. 2022; 44: 1788-1809. [
DOI:10.3390/cimb44050123]
9. Saad AIM and Elshahed AM. Recent advances in plant in vitro culture. Plant Tissue culture media, Chapter 2. 2012, 29-40.
10. Kharrazi M, Moradian M, Safari N, Khadem A and Sharifi A. Optimizing of in vitro cultural conditions of Howerthia (Haworthia cooperi Baker). Plant Prod. 2022; 45(1): 53-66.
11. Sharifi A, Moradian M, Safari N, Khadem A and Kharrazi M. Optimization plant growth regulation type and culture medium salts in the micropropagation of Syngonium (Syngonium podophyllum L.). J. Hortic. Sci. 2022; 35(4): 647-660.
12. Kharrazi M, SargaziMoghaddam Z, Moradian M, Safari N, Khadem A and Sharifi A. Optimization of the in-vitro culture protocol of Haworthiopsis viscosa and Haworthia truncate var. truncate. S AFR J. BOT. 2024; 169: 506-514. [
DOI:10.1016/j.sajb.2024.05.006]
13. Mahood HE. Effect of plant growth regulators and explant source on the induction of Callus of Dianthus caryophyllus L. Basrah. JAS. 2021; 34(2): 100-106. [
DOI:10.37077/25200860.2021.34.2.08]
14. Takanashi K, Nakagawa Y, Aburaya S, Kaminade K, Aoki W, Saida-Munakata Y, Sugiyama A, Ueda M and Yazaki K. Comparative proteomic analysis of Lithospermum erythrorhizon reveals regulation of a variety of metabolic enzymes leading to comprehensive understanding of the Shikonin biosynthetic pathway. Plant Cell Physiol. 2019; 60(1): 19-28. [
DOI:10.1093/pcp/pcy183]
15. Touno K, Harada K, Yoshimatsu K, Yazaki K and Shimomura K. Shikonin derivative formation on the stem of cultured shoots in Lithospermum erythrorhizon. Plant Cell Rep. 2000; 19: 1121-1126. [
DOI:10.1007/s002990000237]
16. Tatsumi K, Yano M, Kaminade K, Sugiyama A, Sato M, Toyooka K, Aoyama T, Sato F and Yazaki K. Characterization of Shikonin derivative secretion in Lithospermum erythrorhizon hairy roots as a model of lipid-soluble metabolite secretion from plants. Front. Plant Sci. 2016; 7: 1066. [
DOI:10.3389/fpls.2016.01066]
17. Compton ME. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tiss. Organ Cult. 1994; 37: 217-242. [
DOI:10.1007/BF00042336]
18. Gomes F. and Canhoto JM. Micropropagation of Eucalyptus nitens maiden (Shining gum). In Vitro Cell. Dev. Biol. Plant. 2003; 39: 316-321. [
DOI:10.1079/IVP2002376]
19. Safari N, Tehranifar A, Kharrazi M and Shoor M. Micropropagation of endangered Iris ferdowsii Joharchi and Memariani through callus induction. Plant Cell Tiss. Organ Cult. 2023; 154: 595-604. [
DOI:10.1007/s11240-023-02535-1]
20. Rahayu S, Roostika I and Bermawie N. The effect of types and concentrations of auxins on callus induction of Centella asiatica. Nusantara Bioscience. 2016; 8: 283-287. [
DOI:10.13057/nusbiosci/n080224]
21. Normasari R, Arumingtyas EL, Retnowati R and Widoretno W. The combination effect of Auxin and Cytokinin on callus induction of Patchouli (Pogostemon Cablin Benth.) from leaf explants. Proceedings of the 3rd International Conference on Biology, Science and Education (IcoBioSE 2021). 2023; ABSR 32: 551-557. [
DOI:10.2991/978-94-6463-166-1_66]
22. George EF, Hall MA and Klerk G-JD. Plant propagation by tissue culture. The Background, Springer, 2008; 1: 65-75. [
DOI:10.1007/978-1-4020-5005-3]
23. Mayerni R, Satria B, Wardhani DK and Chan SR. Effect of auxin (2, 4-D) and Cytokinin (BAP) in callus induction of local patchouli plants (Pogostemon cablin Benth.). IOP Conf. Series: Earth and Environmental Science. 2020; 583(1) 012003. [
DOI:10.1088/1755-1315/583/1/012003]
24. Tripathy SK, Swain D, Mishra PK, Baisakh B, and Dash S. Optimization of callus induction in Lathyrus sativus L. AJFST. 2014; 5(3): 60-66.
25. Al-Oqab MA, Zaid S and Al-Ammouri Y. Effect of nutrient media enhanced with plant-growth regulators on indirect somatic embryogenesis induction for the tissue culture of Digitalis purpurea. J. Appl. Biol. Biotech. 2022; 10(6): 44-50. [
DOI:10.7324/JABB.2022.100605]
26. Mousavi ES, Behbehani M, Hadavi E and Miri SM. Callus induction and plant regeneration in lisianthus (Eustoma granditlorum). TJS. 2012; 10(1): 22-25.
27. Ghaffari Esizad S, Kaviani B, Tarang A and Bohlooli Zanjani S. Micropropagation of lisianthus (Eustoma grandiflorum), an ornamental plant. Plant Omics. 2012; 5(3): 314-319.
28. Nakagawa K, Konagai A, Fukui H and Tabata M. Release and crystallization of berberine in the liquid medium of Thalictrum minus cell suspension cultures. Plant Cell Rep. 1984; 3(6): 254-7. [
DOI:10.1007/BF00269306]
29. Chan LK, Tan CM and Chew GS. Micropropagation of the Araceae ornamental plants. Acta Hortic. 2003; 616: 383-390. [
DOI:10.17660/ActaHortic.2003.616.58]
30. Ahmad EU, Hayashi T, Zhu Y, Hosowaka M and Yazawa S. Lower incidence of variants in Caladium bicolor Ait. plants propagated by culture of explants from younger tissue. Sci. Hortic. 2002; 96: 187-194. [
DOI:10.1016/S0304-4238(02)00092-4]
31. Seydi SH, Negahdar N, Taghizadeh Andevari R, Ansari MH. and Kaviani B. Effect of BAP and NAA on micropropagation of Caladium bicolor (Aiton) Vent., an ornamental plant. JOP. 2016; 6(1): 59-66.
32. Kaviani B. Some useful information about micropropagation. JOP. 2015; 1(5): 29-40.
33. Ali A, Munawar A and Naz S. An in vitro study on micropropagation of Caladium bicolor. Inter. J. Agric. Biol. 2007; 9(5): 731-735.
34. Ahmad N, Strnad M, editors. Meta-topolin: A growth regulator for plant biotechnology and agriculture. Springer Nature Singapore Pte Ltd; 2021, pp: 221-240. [
DOI:10.1007/978-981-15-9046-7]
35. Ibáñez A, Valero M and Gómez AM. Establishment and in vitro clonal propagation of the Spanish autochthonous table grapevine cultivar Napoleon: an improved system where proliferating cultures alternate with rooting ones. Anales de Biología. 2005; 27: 211-220.
36. Chawla HS. Introduction to plant biotechnology. Third Edition, Springer. 2009; 538pp.
37. El-Agamy SZ, El-Mahdy T.K., Mohamed A.A. In vitro propagation of some grape root stocks. Acta Hortic. 2009; 839: 125-131. [
DOI:10.17660/ActaHortic.2009.839.14]
38. Altpeter F and Sandhu S. Genetic transformation-biolistics. Plant Cell Culture: Essential Methods Chapter 12. 2010, pp. 217-239. [
DOI:10.1002/9780470686522.ch12]
39. Nowakowska K, Pińkowska A, Siedlecka E and Pacholczak A. The effect of cytokinins on shoot proliferation, biochemical changes and genetic stability of Rhododendron 'Kazimierz Odnowiciel' in the in vitro Cultures. Plant Cell Tissue Organ Cult. 2022; 149: 675-684. [
DOI:10.1007/s11240-021-02206-z]
40. Kim SH, Zebro M, Jang DC, Sim JE, Park HK, Kim KY, Bae HM, Tilahun S and Park SM. Optimization of plant growth regulators for in vitro mass propagation of a disease-free 'Shine Muscat' grapevine cultivar. Curr. Issues Mol. Biol. 2023; 45(10): 7721-7733. [
DOI:10.3390/cimb45100487]
41. Qiu Y, Guan S.C, Wen C, Li P, Gao Z and Chen X. Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. BMC Plant Biol. 2019; 19: 528: 1-16. [
DOI:10.1186/s12870-019-2151-x]
42. Gray DJ, Jayasankar S and Li Z. Vitis spp. grape, In: Biotechnology of Fruit and Nut Crops. Litz R.E. (Ed.), 2005, pp: 672-706. [
DOI:10.1079/9780851996622.0672]
43. Kulaeva ON. Cytokinin action on enzyme activities in plants, In: Plant Growth Substances 1979. Proceedings of the 10th International Conference on Plant Growth Substances, Skoog F. (Ed.), Springer. 1980, pp: 119-128. [
DOI:10.1007/978-3-642-67720-5_12]
44. Jain SM and Ochatt SJ. Protocols for in vitro propagation of ornamental plants. Springer Ptotocols. Humana Press. 2010. [
DOI:10.1007/978-1-60327-114-1]
45. Mujib A, Ali M, Tonk D, Isah T, Zafar N. Embryogenesis in ornamental monocots: Plant growth regulators as signalling element. Somatic Embryogenesis in Ornamentals and its Applications. 2016; 187-201. [
DOI:10.1007/978-81-322-2683-3_12]
46. Ludwig-Müller J, Vertocnik A and Town CD. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J. Exp. Bot. 2005; 56(418): 2095-105. [
DOI:10.1093/jxb/eri208]
47. Srivastava LM. Plant growth and development: Hormones and environment. Ann. Bot. 2003; 92(6): 846. [
DOI:10.1093/aob/mcg209]
48. Ren H, Xu Y, Zhao X, Zhang Y, Hussain J, Cui F, Qi G and Liu S. Optimization of tissue culturing and genetic transformation protocol for Casuarina equisetifolia. Front. Plant Sci. 2022; 12: 784566. [
DOI:10.3389/fpls.2021.784566]
49. Fekry WA and Wahdan HM. Influence of substrates on in vitro rooting and acclimatization of micropropagated strawberry (Fragaria x ananassa Duch.). Middle East J. Agric. Res. 2017; 6(3): 682- 691.
50. Feng X and Zhang L. Vermiculite and humic acid improve the quality of green waste compost as a growth medium for Centaurea cyanus L. Environ. Technol. Innova. 2021; 24(2021): 101945. [
DOI:10.1016/j.eti.2021.101945]
51. Mineo L. Plant tissue culture techniques. In: Tested studies for laboratory teaching. Vol. 11. (C.A. Goldman, ed.). Proceeding of the Eleventh Workshop/Conference of Association Biology and Laboratory Education, (ABLE), 1990, pp: 151-174.
52. Rout G, Samantaray S and Das P. In vitro manipulation and propagation of medicinal plants. Biotechnol. Advanc. 18(2): 91-120. [
DOI:10.1016/S0734-9750(99)00026-9]
53. Blume YB, Krasylenko YA and Yemets AI. Effects of phytohormones on the cytoskeleton of the plant cell. Russ. J. Plant Physiol. 2012; 59: 515-529. doi: 10.1134/S1021443712040036. [
DOI:10.1134/S1021443712040036]
54. Malik S, Bhushan S, Sharma M and Ahuja PS. Biotechnological approaches to the production of shikonins: a critical review with recent updates. Crit. Rev. Biotechnol. 2016; 36(2): 327-40. [
DOI:10.3109/07388551.2014.961003]
55. Azuma H. Li J. Youda R. Suzuki T. Miyamoto K. Taniguchi T. and Nagasaki T. Improved isolation procedure for shikonin from the root of the Chinese medicinal plant Lithospermum erythrorhizon and its solubilization with cyclodextrins. J. Appl. Res. Med. Aromat. Plants. 2016; 3(2): 58-63. [
DOI:10.1016/j.jarmap.2016.01.002]