year 22, Issue 88 (3-2024)                   J. Med. Plants 2024, 22(88): 1-9 | Back to browse issues page

Ethics code: 010221/2012-3

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Miranda M A, Sares C, Andrade A F, Borges K S, McChesney J D, Bastos J K et al . Effects of ethanolic extract and cernumidine compound obtained from Solanum cernuum’s Vell. leaves on benign prostatic hyperplasia. J. Med. Plants 2024; 22 (88) :1-9
URL: http://jmp.ir/article-1-3587-en.html
1- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil , marizamiranda@ufl.edu
2- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
3- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
4- Ironstone Separations, Inc., Oxford, USA
5- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
Abstract:   (676 Views)
Background: Solanum cernuum Vell. (Solanaceae) is a native plant from Brazil traditionally used for treating ulcers, liver damage, skin infections, gonorrhea, and benign prostatic hyperplasia (BPH). Objective: To evaluate the impact of hydroalcoholic extract and cernumidine obtained from S. cernuum Vell. leaves against prostate primary smooth muscle cell culture and assess their potential effect in inducing apoptosis (annexin V assay by flow cytometry). Methods: The hydroethanolic extract of S. cernuum was obtained by macerating powdered dried leaves followed by fractionation, furnishing 4.8 % w/w of cernumidine alkaloid as established by high performance liquid chromatographic analysis. Primary BPH smooth muscle cell culture was used in cell proliferation and apoptosis assays, whereby prostate smooth muscle cells were subjected to 0.125-5.0 mg/mL of hydroethanolic extract and 0.025-1.0 mg/mL of cernumidine for 48, 72, and 96 h. Results: Hydroethanolic extract (2 mg/mL) and cernumidine (1 mg/mL [3.3 × 10-6 M]) inhibited the cell growth by 60 % and 62 % at 96 h, respectively, and eventually led to cell death by apoptosis. On the other hand, only cernumidine (1 mg/mL) induced significant death by necrosis compared to control. Conclusion: The obtained findings corroborate the use of S. cernuum in native medicine and indicate that cernumidine is a promising candidate for further studies focusing on BPH treatment.
Full-Text [PDF 705 kb]   (433 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2023/12/6 | Accepted: 2024/04/13 | Published: 2024/03/3

References
1. Lim K.B. Epidemiology of clinical benign prostatic hyperplasia. Asian J. Urol. 2017; 4(3): 148-151. [DOI:10.1016/j.ajur.2017.06.004]
2. Egan K.B. The Epidemiology of Benign Prostatic Hyperplasia Associated with Lower Urinary Tract Symptoms: Prevalence and Incident Rates. Urol. Clin. North Am. 2016; 43(3): 289-297. [DOI:10.1016/j.ucl.2016.04.001]
3. Bearelly P, Avellino G.J. The role of benign prostatic hyperplasia treatments in ejaculatory dysfunction. Fertil. Steril. 2021; 116(3): 611-617. [DOI:10.1016/j.fertnstert.2021.07.1199]
4. GBD 2019 Benign Prostatic Hyperplasia Collaborators. The global, regional, and national burden of benign prostatic hyperplasia in 204 countries and territories from 2000 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2022; 3: e754-76.
5. Tamalunas A, Keller P, Schott M, Atzler M, Ebner B, Hennenberg M, Stief C G and Magistro G. Benign prostate Hyperplasia current medical therapy, new developments, and side effects. Ther. Umsch. 2023; 80(3): 113-122. [DOI:10.1024/0040-5930/a001423]
6. Brandão MGL, Pignal M, Romaniuc S, Grael CFF and Fagg CW. Useful Brazilian plants listed in the field books of the French naturalist Auguste de Saint-Hilaire (1779-1853). J. Ethnopharmacol. 2012; 143(2): 488-500. [DOI:10.1016/j.jep.2012.06.052]
7. Lopes LC, Roman B, Medeiros MA, Mukhopadhyay A, Utrilla P, Gálvez J, Mauriño SG, Moltiva V, Lourenço A and Feliciano AS. Cernumidine and isocernumidine, new type of cyclic guanidine alkaloids from Solanum cernuum. Tetrahedron Lett. 2011; 52(48): 6392-6395. [DOI:10.1016/j.tetlet.2011.09.060]
8. Lopes LC, De Carvalho JE, Kakimore M, Vendramini-Costa DB, Medeiros MA, Spindola HM, Ávila-Román J, Lourenço AM and Motilva V. Pharmacological characterization of Solanum cernuum Vell.: 31-Norcycloartanones with analgesic and anti-inflammatory properties. Inflammopharmacol. 2014; 22: 179-185. [DOI:10.1007/s10787-013-0182-8]
9. Grando R, Antônio M A, Araújo C E P, Soares C, Medeiros M A, Carvalho J E de Lourenço A M, and Lopes L C. Antineoplastic 31-Norcycloartanones from Solanum cernuum Vell. Z. Naturforsch C. 2008; 63: 507-514. [DOI:10.1515/znc-2008-7-807]
10. Ramos AC and de Oliveira RR. A new alkaloid and flavonoids isolated from Solanum cernuum leaves by high-performance countercurrent chromatography. Nat. Prod. Res. 2017; 31(20): 2405-2412. [DOI:10.1080/14786419.2017.1311889]
11. Ramos A C and De Oliveira R R. One-step separation of terpenoids from leaves extracts of Solanum cernuum by high-performance countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2016; 39(1): 8-12. [DOI:10.1080/10826076.2015.1115767]
12. Miranda MA, Mondal A, Sachdeva M, Cabral H, Neto YAAH, Khan I, Groppo M, McChesney JD and Bastos JK. Chemosensitizing Effect of Cernumidine extracted from Solanum cernuum on bladder cancer cells in vitro. Chem. Biodivers. 2019; 16(10): 16-24. [DOI:10.1002/cbdv.201900334]
13. Wang S, Lee DY, Shang Y, Liao J, Cao X, Xie L, Zhang T, Liu J and Dai R. The bioactive alkaloids identified from Cortex Phellodendri ameliorate benign prostatic hyperplasia viaLOX-5/COX-2 pathways. Phytomedicine 2021; 93: 15-25. 153813. [DOI:10.1016/j.phymed.2021.153813]
14. Miao L, Yun X, Yang X, Jia S, Jiao C, Shao R, Hao J, Chang Y, Fan G, Zang J, Geng Q, Wichai N and Gao X. An inhibitory effect of Berberine from herbal Coptis chinensis Franch on rat detrusor contraction in benign prostatic hyperplasia associated with lower urinary tract symptoms. J. Ethnopharmacol. 2021; 268: 113-126. [DOI:10.1016/j.jep.2020.113666]
15. Li T, Xu K, He J, Jahan N, Song J and Wang S. Effects of isocorynoxeine, from Uncaria, on lower urinary tract dysfunction caused by benign prostatic hyperplasia via antagonism of α1A-adrenoceptors. Toxicol. Appl. Pharmacol. 2019; 376: 95-106. [DOI:10.1016/j.taap.2019.05.018]
16. Zhao Y, Zhang Y, Li Y, Yang M, Yuan J, Cao Y, Xu L, Ma X, Lin S, An J and Wang S Yohimbine hydrochloride inhibits benign prostatic hyperplasia by downregulating steroid 5α-reductase type 2. Eur. J. Pharmacol. 2021; 908: 175-183. [DOI:10.1016/j.ejphar.2021.174334]
17. Miranda MA, Lemos M, Cowart KA, Rodenburg D, Mcchesney JD, Radwan MM, Furtado NAJC and Bastos JK. Gastroprotective activity of the hydroethanolic extract and isolated compounds from the leaves of Solanum cernuum Vell. J. Ethnopharmacol. 2015; 172: 421-429. [DOI:10.1016/j.jep.2015.06.047]
18. Hamakawa T, Sasaki S, Shibata Y, Imura M, Kubota Y, Kojima Y and Kohri K. Interleukin-18 may lead to benign prostatic Hyperplasia via Thrombospondin-I production in prostatic smooth muscle cells. The Prostate. 2014; 74(6): 590-601. [DOI:10.1002/pros.22773]
19. Kamiloglu S, Sari G, Ozdal T and Capanoglu E. Guidelines for cell viability assays. Food Front. 2020; 1(3): 332-349. [DOI:10.1002/fft2.44]
20. Lakshmanan I and Batra SK. Protocol for Apoptosis assay by Flow Cytometry using Annexin V staining method. Bio Protoc. 2013; 3(6): 1-3. [DOI:10.21769/BioProtoc.374]
21. Bras M, Queenan B and Susin SA. Programmed cell death via mitochondria: Different modes of dying. Biochem. 2005; 70: 231-239. [DOI:10.1007/s10541-005-0105-4]
22. Boujrad H, Gubkina O, Robert N, Krantic S and Susin AS. AIF-mediated programmed necrosis: A highly regulated way to die. Cell Cycle 2007; 6(21): 2612-2619. [DOI:10.4161/cc.6.21.4842]
23. Hail N, Carter B Z, Konopleva M and Andreeff M. Apoptosis effector mechanisms: A requiem performed in different keys. Apoptosis 2006; 11: 889-904. [DOI:10.1007/s10495-006-6712-8]
24. Liao X, Tang S, Thrasher J B, Griebling T L and Li B. Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol. Cancer Ther. 2005; 4(4): 505-515. [DOI:10.1158/1535-7163.MCT-04-0313]
25. Yasuhara S, Zhu Y, Matsui T, Tipirneni N, Yasuhara Y, Kaneki M, Rosenzweig A and Martyn J A J. Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J. Histochem. Cytochem. 2003; 51(7): 873-885. [DOI:10.1177/002215540305100703]
26. Souza F O, Sorbo J M, Regasini L O, Bolzani V S, Rosa J C, Czernys E S, Valente V, Moreira T F, Navegante G, Fernandes B C and Soares C P. Nitensidine B affects proteins of the glycolytic pathway and induces apoptosis in cervical carcinoma cells immortalized by HPV16. Phytomedicine 2018; 48: 179-186. [DOI:10.1016/j.phymed.2018.05.016]
27. Russell P J, Russell P, Rudduck C, Tse B W C, Williams E D and Raghavan D . Establishing prostate cancer patient derived xenografts: Lessons learned from older studies. Prostate 2015; 75(6): 628-636. [DOI:10.1002/pros.22946]
28. Ellis L M and Fidler I J. Finding the tumor copycat: Therapy fails, patients don't. Nat. Med. 2010; 16: 974-975. [DOI:10.1038/nm0910-974]
29. Gillet J P, Calcagno A M, Varma S, Marino M, Green L J, Vora M I, Patel C, Orina J N, Eliseeva T A, Vineet S, Padmanabhan R, Davidson B, Ganapathi R, Sood A K, Rueda B R, Ambudkar S V and Gottesman M M. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci. USA 2011; 108(46): 18708-18713. [DOI:10.1073/pnas.1111840108]
30. Whittle J R, Lewis M T, Lindeman G J and Visvader J E. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015; 17: [DOI:10.1186/s13058-015-0523-1]
31. Sajjad H, Imtiaz S, Noor T, Siddiqui YH, Sajjad A, Zia M. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research. Animal Model. Exp. Med. 2021; 4(2): 87-103. [DOI:10.1002/ame2.12165]
32. Ibarra-Sánchez M J, Martínez-Aguilar J F and Esparza-López J. Deriving primary cancer cell cultures for personalized therapy. Rev. Invest Clin. 2019; 71(6): 369-380. [DOI:10.24875/RIC.19002832]
33. Killekar K, Puranik S I, Akbar A A, Ghagane S C, Nerli R B, Hiremath M B. Overview of primary cell culture models in preclinical research of prostate and bladder cancer [Internet]. Cell Culture - Advanced Technology and Applications in Medical and Life Sciences. IntechOpen; 2022. [DOI:10.5772/intechopen.99493]
34. Allkanjari O and Vitalone A. What do we know about phytotherapy of benign prostatic hyperplasia? Life Sci. 2015; 126: 42-56. [DOI:10.1016/j.lfs.2015.01.023]
35. Almança C C J, Saldanha S V, Sousa D R, Trivilina L O, Nunes L C, Porfírio L C and Marinho B G. Toxicological evaluation of acute and sub-chronic ingestion of hydroalcoholic extract of Solanum cernuum Vell. in mice. J. Ethnopharmacol. 2011; 138(2): 508-512. [DOI:10.1016/j.jep.2011.09.045]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb