year 22, Issue 87 (12-2023)                   J. Med. Plants 2023, 22(87): 1-25 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Malakootikhah J, Yahyaei M, Ghafarzadegan R, Ghafarzadegan R. Herbal nano-formulations in lung cancer: Superiorities to original forms. J. Med. Plants 2023; 22 (87) :1-25
URL: http://jmp.ir/article-1-3544-en.html
1- PhD in Nanobiotechnology, University of Tehran, Tehran, Iran , JMalakootikhah@ut.ac.ir
2- Department of Animal science, Faculty of Agriculture and Natural Science, Arak University, Iran
3- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
4- Department of Nursing, Khomein Faculty of Medical Sciences, Arak University of Medical Sciences, Arak, Iran
Abstract:   (734 Views)
Background: LC (Lung cancer) is the most common type of cancer and has an increased mortality and morbidity rate throughout the world. Although radiation therapy, chemotherapy, and surgical approaches are among the common curative strategies against LC, these methods have not enough efficacies and may cause adverse effects. As a result, identifying alternative ways in order to treat and control LC patients is necessary. Objective: In this narrative review, we argued about the curative influences nano-based herbal medicine (Curcumin, Green tea, quercetin, and Marsdenia tenacissima) and their comparison with the focus on their mechanistic aspects against LC. Methods: The databases of Google Scholar, Web of Science, PubMed, Scopus, and SID were searched, with no date limitation for articles published in English. Results: The evaluation results showed these herbal products through various mechanisms, such as regulating the immune system, stimulating cell apoptosis, and autophagy, can be helpful in LC treatment. However, the co-use of herbal medicine and nano-formulations, namely Zinc oxide NPs (Nano particles), CdS QDs (cadmium sulfide quantum dots), NPs conjugated with AuNPs (Au nanoparticles), can dramatically overcome some limitations of herbal medicine and increase its efficacy against LC. Conclusion: It seems that the use of nanoformulations and herbal medicine improve LC. However, more studies with large sample sizes are needed to prove these findings.
Full-Text [PDF 791 kb]   (477 Downloads)    
Type of Study: Review | Subject: Medicinal Plants
Received: 2023/07/23 | Accepted: 2023/11/5 | Published: 2023/12/31

References
1. Woodman C, Vundu G, George A and Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Seminars in Cancer Biology 2021; 69: 349-364. [DOI:10.1016/j.semcancer.2020.02.009]
2. Asakura K, Kadota T, Matsuzaki J, Yoshida Y, Yamamoto Y, Nakagawa K, Takizawa S, Aoki Y, Nakamura E, Miura J, Sakamoto H, Kato K, Shun-ichi Watanabe Shi and Takahiro Ochiya. A miRNA-based diagnostic model predicts resectable lung cancer in humans with high accuracy. Commun. Biol 2020; 3(134): 1-9. [DOI:10.1038/s42003-020-0863-y]
3. Tao S-L, Wang X-m, Feng Y-g, Kang P-m, Li Q-y, Sun T-y, Tan Q-y and Deng B. Is the presence of lung injury in COVID-19 an independent risk factor for secondary lung cancer? Med. Hypotheses 2020; 143: 110074. [DOI:10.1016/j.mehy.2020.110074]
4. Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A and Mirzaei H. The role of microRNAs in lung cancer: implications for diagnosis and therapy. Curr. Mol. Med. 2020; 20: 90-101. [DOI:10.2174/1566524019666191001113511]
5. Zappa C and Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016; 5(3): 288-300. [DOI:10.21037/tlcr.2016.06.07]
6. Van Meerbeeck CMO JP, Fennell FRCP DA and De Ruysscher MD DK. Small-cell lung cancer. The Lancet 2011; 378(9804): 1741-1755. [DOI:10.1016/S0140-6736(11)60165-7]
7. Xu Q, Shi NJ, Zhang H and Zhu YM. Effects of combined general-epidural anesthesia and total intravenous anesthesia on cellular immunity and prognosis in patients with non‑small cell lung cancer: A comparative study. Mol. Med. Rep. 2017; 16(4): 4445-4454. [DOI:10.3892/mmr.2017.7144]
8. Moya-Horno I, Viteri S, Karachaliou N and Rosell R. Combination of immunotherapy with targeted therapies in advanced non-small cell lung cancer (NSCLC). Ther. Adv. Med. Oncol 2018; 10: 1-27. [DOI:10.1177/1758834017745012]
9. Lu T, Yang X, Huang Y, Zhao M, Li M, Ma K, Yin J, Zhan Ch and Wang Q. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag Res. 2019; 11: 943-953. [DOI:10.2147/CMAR.S187317]
10. Shu Y, Zhu L, Yuan F, Kong X, Huang T and Cai Y-D. Analysis of the relationship between PM2. 5 and lung cancer based on protein-protein interactions. Comb. Chem. High Throughput Screen 2016; 19(2): 100-108. [DOI:10.2174/1386207319666151110123345]
11. Patel AM and Peters SG. Clinical manifestation of lung cancer. Mayo Clin. Pro. 1993; 68(3): 273-277. [DOI:10.1016/S0025-6196(12)60049-4]
12. An Q, Shi C-X, Guo H, Xie S-M, Yang Y-Y, Liu Y-N, Liu Z-H, Zhou Ch-ZH and Niu F-J. Development and characterization of octreotide-modified curcumin plus docetaxel micelles for potential treatment of non-small-cell lung cancer. Pharm. Dev. Technol. 2019; 24(9): 1164-1174. [DOI:10.1080/10837450.2019.1647236]
13. Xie J, Zhuan B, Wang H, Wang Y, Wang X, Yuan Q and Yang Z. Huaier extract suppresses non‐small cell lung cancer progression through activating NLRP3‐dependent pyroptosis. Anat. Rec. 2019; 304(2): 291-301. [DOI:10.1002/ar.24307]
14. Ahn J, Kim H and Yang KM. An aqueous extract of a bifidobacterium species induces apoptosis and inhibits invasiveness of non-small cell lung cancer cells. J. Microbiol. Biotechnol. 2020; 30(6): 885-893. [DOI:10.4014/jmb.1912.12054]
15. Liu J, Liu X, Dong M, Zhao H, Li M, Zhang H, Ji H, Shi Y, Cui Y, Wu D, Chen G and Chen J. Symptom trajectories during chemotherapy in patients with non‐small cell lung cancer (NSCLC) and the function of prolonging low dose dexamethasone in promoting enhanced recovery after chemotherapy. Thorac. Cancer 2021; 12(6): 783-795. [DOI:10.1111/1759-7714.13830]
16. Sajadimajd S, Bahramsoltani R, Iranpanah A, Patra JK, Das G, Gouda S, Rahimi R, Rezaeiamiri E, Cao H, Giampieri F, Battino M, Tundis R, Campos MG, Farzaei MH and Xiao J. Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacol. Res 2020; 151: 104584. [DOI:10.1016/j.phrs.2019.104584]
17. Farzaei MH, Bahramsoltani R and Rahimi R. Phytochemicals as adjunctive with conventional anticancer therapies. Curr. Pharm. Des. 2016; 22(27): 4201-4018. [DOI:10.2174/1381612822666160601100823]
18. Kwon C-Y, Lee B, Kim K-I and Lee B-J. Herbal medicine on cancer-related fatigue of lung cancer survivors: Protocol for a systematic review. Medicine 2020; 99(5): e18968. [DOI:10.1097/MD.0000000000018968]
19. Ernest U, Chen H-Y, Xu M-J, Davatgaran Taghipour Y, Asad MHHB, Rahimi R and Murtaza G. Anti-cancerous potential of polyphenol-loaded polymeric nanotherapeutics. Molecules 2018; 23(11): 1-21. [DOI:10.3390/molecules23112787]
20. Mukherjee A, Paul M and Mukherjee S. Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers 2019; 11(5): 1-18. [DOI:10.3390/cancers11050597]
21. Forgacs E, Zöchbauer-Müller S, Oláh E and Minna JD. Molecular genetic abnormalities in the pathogenesis of human lung cancer. Pathol. Oncol. Res. 2001; 7: 6-13. [DOI:10.1007/BF03032598]
22. Burstein HJ and Schwartz RS. Molecular origins of cancer. N. Engl. J. Med. 2008; 358(5): 527. [DOI:10.1056/NEJMe0800065]
23. Cho WC, Kwan CK, Yau S, So PP, Poon PC and Au JS. The role of inflammation in the pathogenesis of lung cancer. Expert Opin. Ther. Targets 2011; 15(9): 1127-1137. [DOI:10.1517/14728222.2011.599801]
24. Garon EB, Yang JC-H and Dubinett SM. The role of interleukin 1β in the pathogenesis of lung cancer. JTO Clin. Res. Rep. 2020; 1(1): 1-11. [DOI:10.1016/j.jtocrr.2020.100001]
25. Azad N, Rojanasakul Y and Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J. Toxicol. Environ. Health, Part B Crit. Rev. 2008; 11(1): 1-15. [DOI:10.1080/10937400701436460]
26. Li R, Ong SL, Tran LM, Jing Z, Liu B, Park SJ, Huang ZL, Walser TC, Heinrich EL, Lee G, Salehi-Rad R, Crosson WP, Pagano PC, Paul MK, Xu Sh, Herschman H, Krysan K and Dubinett S. Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer. Sci. Rep. 2020; 10(377). [DOI:10.1038/s41598-019-57285-y]
27. Kundu JK and Surh Y-J. Inflammation: gearing the journey to cancer. Mutat. Res. 2008; 659(1-2): 15-30. [DOI:10.1016/j.mrrev.2008.03.002]
28. El-Kenawi A and Ruffell B. Inflammation, ROS, and mutagenesis. Cancer Cell. 2017; 32(6): 727-729. [DOI:10.1016/j.ccell.2017.11.015]
29. Poillet-Perez L, Despouy G, Delage-Mourroux R and Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 2015; 4: 184-92. [DOI:10.1016/j.redox.2014.12.003]
30. Wu D, Liu J, Chen J, He H, Ma H and Lv X. miR-449a suppresses tumor growth, migration, and invasion in non-small cell lung cancer by targeting a HMGB1-Mediated NF-κB signaling pathway. Oncol. Res. 2019; 27(2): 227-35. [DOI:10.3727/096504018X15213089759999]
31. DB Vendramini-Costa and Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr. Pharm. Des. 2012; 18(26): 3831-3852. [DOI:10.2174/138161212802083707]
32. Li R, Zhou R and Zhang J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol. Lett. 2018; 15(5): 7506-7514. [DOI:10.3892/ol.2018.8355]
33. Marshall EA, Ng KW, Kung SH, Conway EM, Martinez VD, Halvorsen EC, Rowbotham DA, Vucic EA, Plumb AW, Becker-Santos DD, Enfield KSS, Kennett JY, Bennewith KL, Lockwood WW, Lam S, English JC, Abraham N and Lam WL. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol. Cancer 2016; 15: 1-15. [DOI:10.1186/s12943-016-0551-1]
34. Narendra BL, Reddy KE, Shantikumar S and Ramakrishna S. Immune system: a double-edged sword in cancer. Inflamm. Res. 2013; 62: 823-834. [DOI:10.1007/s00011-013-0645-9]
35. Eisenstein EM and Williams CB. The T reg/Th17 Cell Balance: A New Paradigm for Autoimmunity. Pediatr. Res. 2009; 65: 26-31. [DOI:10.1203/PDR.0b013e31819e76c7]
36. Lin S, Zhen Y, Guan Y and Yi H. Roles of Wnt/β-catenin signaling pathway regulatory long non-coding RNAs in the pathogenesis of non-small cell lung cancer. Cancer Manag. Res. 2020; 12: 4181-4191. [DOI:10.2147/CMAR.S241519]
37. Chen W, Li Z, Bai L and Lin Y. NF-kappaB, a mediator for lung carcinogenesis and a target for lung cancer prevention and therapy target. FBL. 2011; 16(3): 1172-1185. [DOI:10.2741/3782]
38. Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A, Hight SK, Sato M, Girard L, Behrens C, Wistuba II, Gazdar AF, Hayward NK and Minna JD. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J. Clin. Invest. 2016; 126(9): 3219-3235. [DOI:10.1172/JCI76725]
39. Dutta P, Sabri N, Li J and Li WX. Role of STAT3 in lung cancer. JAK-STAT 2014; 3(4): e999503. 1-9. [DOI:10.1080/21623996.2014.999503]
40. Rapp J, Jaromi L, Kvell K, Miskei G and Pongracz JE. WNT signaling-lung cancer is no exception. Respir. Res. 2017; 18(167): 1-16. [DOI:10.1186/s12931-017-0650-6]
41. Ryter SW and Choi AM. Autophagy in lung disease pathogenesis and therapeutics. Redox Biol. 2015; 4: 215-225. [DOI:10.1016/j.redox.2014.12.010]
42. Shivapurkar N, Reddy J, Chaudhary PM and Gazdar AF. Apoptosis and lung cancer: a review. J. Cell. Biochem. 2003; 88(5): 885-98. [DOI:10.1002/jcb.10440]
43. Liu G, Pei F, Yang F, Li L, Amin AD, Liu S and Cho WC. Role of autophagy and apoptosis in non-small-cell lung cancer. Int. J. Mol. Sci. 2017; 18(2): 367. [DOI:10.3390/ijms18020367]
44. Musial C, Zaucha R, Kuban-Jankowska A, Konieczna L, Belka M, Gammazza AM Baczek T, Cappello F, Wozniak M and Gorska-Ponikowska M. Plausible role of estrogens in pathogenesis, progression and therapy of lung cancer. Int. J. Environ. Res. Public Health 2021; 18(2): 648. [DOI:10.3390/ijerph18020648]
45. Duru CB, Uwakwe KA, Chinomnso NC, Mbachi II, Diwe KC, Agunwa CC, IWU AC and Merenu IA. Socio-demographic determinants of herbal medicine use in pregnancy among Nigerian women attending clinics in a tertiary Hospital in Imo State, south-east, Nigeria. Am. J. Med. Stud. 2016; 4(1): 1-10.
46. Kamboj VP. Herbal medicine. Curr. Sci. 2000; 78: 35-39. [DOI:10.1021/cen-v078n045.p035]
47. Yin X, Zhou J, Jie C, Xing D and Zhang Y. Anticancer activity and mechanism of Scutellaria barbata extract on human lung cancer cell line A549. Life Sci. 2004; 75(18): 2233-2244. [DOI:10.1016/j.lfs.2004.05.015]
48. Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA and Siddiqui MA. Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pac. J. Cancer Prev. 2014; 15(2): 983-987. [DOI:10.7314/APJCP.2014.15.2.983]
49. Hwang JW, Oh JH, Yoo H-S, Lee Y-W, Cho C-K, Kwon K-R, Yoon J-H, Park J, Her S, Lee Z-W, Jang I-S and Choi J-S. Mountain ginseng extract exhibits anti-lung cancer activity by inhibiting the nuclear translocation of NF-κB. Am. J. Chin. Med. 2012; 40(1): 187-202. [DOI:10.1142/S0192415X12500152]
50. Tchacondo T, Karou SD, Batawila K, Agban A, Ouro-Bang'na K, Anani KT, Gbeassor M, de Souza C. Herbal remedies and their adverse effects in Tem tribe traditional medicine in Togo. Afr. J. Tradit. Complement. Altern. Med. 2011; 8(1): 45-60. [DOI:10.4314/ajtcam.v8i1.60522]
51. Khogta S, Patel J, Barve K and Londhe V. Herbal nano-formulations for topical delivery. J. Herb. Med. 2020; 20: 1-12. [DOI:10.1016/j.hermed.2019.100300]
52. Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, Negahdari R, Zununi Vahed S and Dizaj SM. Anti‐microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother. Res. 2020; 34(8): 1926-1946. [DOI:10.1002/ptr.6658]
53. Chen I-J, Liu C-Y, Chiu J-P and Hsu C-H. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2016; 35(3): 592-599. [DOI:10.1016/j.clnu.2015.05.003]
54. Batiha GE-S, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, Algammal AM and Elewa YHA. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods 2020; 9(3): 1-16. [DOI:10.3390/foods9030374]
55. Zhou X, Liu M, Ren Q, Zhu W, Wang Y, Chen H and Chen J. Oral and injectable Marsdenia tenacissima extract (MTE) as adjuvant therapy to chemotherapy for gastric cancer: a systematic review. BMC Complement Altern. Med 2019; 19(1): 1-14. [DOI:10.1186/s12906-019-2779-y]
56. Naoshad M, Darksha U, Tarique M, Huma N, Ashraf M, Ramesh R, Shams T, Torki A-Z, Ahdab A, Israa J-H and Mohd S. The Role of Natural Products and Their Multitargeted Approach to Treat Solid Cance. Cells. 2022; 11(14): 1-20. [DOI:10.3390/cells11142209]
57. Shivaji K, Mani S, Ponmurugan P, De Castro CS, Lloyd Davies M, Balasubramanian MG and Pitchaimuthu S. Green-synthesis-derived CdS quantum dots using tea leaf extract: antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl. Nano Mater. 2018; 1(4): 1683-1693. [DOI:10.1021/acsanm.8b00147]
58. Wang Y, Yu H, Wang S, Gai C, Cui X, Xu Z, Li W and Zhang W. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater. Sci. Eng: C Mater Biol. Appl. 2021; 119: 1-9. [DOI:10.1016/j.msec.2020.111442]
59. Han S-Y, Zhao W, Han H-B, Sun H, Xue D, Jiao Y-N, He X-R, Jiang S-T and Li P-P. Marsdenia tenacissima extract overcomes Axl-and Met-mediated erlotinib and gefitinib cross-resistance in non-small cell lung cancer cells. Oncotarget 2017; 8: 56893-56905. [DOI:10.18632/oncotarget.18137]
60. Grady WM. Epigenetic events in the colorectum and in colon cancer. Biochem. Soc. Trans. 2005; 33: 684-688. [DOI:10.1042/BST0330684]
61. Rehman Q, Akash MSH, Rasool MF and Rehman K. Role of kinetic models in drug stability. Drug Stability and Chemical Kinetics: Springer; 2020. P: 155-65. [DOI:10.1007/978-981-15-6426-0_11]
62. Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, Dounousi E and Peschos D. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J. Pharm. Sci. 2021; 16(1): 62-76. [DOI:10.1016/j.ajps.2020.05.001]
63. Riyaz B, Sudhakar K and Mishra V. Quantum dot-based drug delivery for lung cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer: Elsevier; 2019. P: 311-26. [DOI:10.1016/B978-0-12-815720-6.00013-7]
64. Ruzycka‑Ayoush M, Kowalik P, Kowalczyk A, Bujak P, Nowicka AM, Wojewodzka M, Kruszewski M and Grudzinski IP. Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells. Cancer Nanotechnol. 2021; 12: 1-27. [DOI:10.1186/s12645-021-00077-9]
65. Chen Y, Yang L, Feng C and Wen L-P. Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochem. Biophys. Res. Commun. 2005; 337(1): 52-60. [DOI:10.1016/j.bbrc.2005.09.018]
66. Liu Y, Hu F and Zhao L. Effect of Nano-Platinum on Proliferation and Apoptosis of Non-Small Cell Lung Cancer Cells via P53 Pathway. J. Nanosci. Nanotechnol 2021; 21(2): 903-908. [DOI:10.1166/jnn.2021.18629]
67. Gurunathan S, Qasim M, Park C, Yoo H, Kim J-H and Hong K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int. J. Mol. Sci 2018; 19(8): 2269. 1-19. [DOI:10.3390/ijms19082269]
68. Foldbjerg R, Dang DA and Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol 2011; 85(7): 743-750. [DOI:10.1007/s00204-010-0545-5]
69. Bahramsoltani R, Rahimi R and Farzaei MH. Pharmacokinetic interactions of curcuminoids with conventional drugs: A review. J. Ethnopharmacol. 2017; 209: 1-12. [DOI:10.1016/j.jep.2017.07.022]
70. Yang Q-Q, Farha AK, Kim G, Gul K, Gan R-Y and Corke H. Antimicrobial and anticancer applications and related mechanisms of curcumin-mediated photodynamic treatments. Trends Food Sci. Technol. 2020; 97: 341-54. [DOI:10.1016/j.tifs.2020.01.023]
71. Stohs SJ, Chen O, Ray SD, Ji J, Bucci LR and Preuss HG. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules 2020; 25(6): 1-12. [DOI:10.3390/molecules25061397]
72. Farzaei MH, Zobeiri M, Parvizi F, El-Senduny FF, Marmouzi I, Coy-Barrera E, Naseri R, Nabavi SM, Rahimi R and Abdollahi M. Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients 2018; 10(7): 1-28. [DOI:10.3390/nu10070855]
73. Mehraban MSA, Tabatabaei-Malazy O, Rahimi R, Daniali M, Khashayar P and Larijani B. Targeting dyslipidemia by herbal medicines: A systematic review of meta-analyses. J. Ethnopharmacol. 2021; 280: 114407. [DOI:10.1016/j.jep.2021.114407]
74. Roghani‐Shahraki H, Karimian M, Valipour S, Behjati M, Arefnezhad R and Mousavi A. Herbal therapy as a promising approach for regulation on lipid profiles: A review of molecular aspects. J. Cell. Physiol. 2021; 236(8): 5533-5546. [DOI:10.1002/jcp.30282]
75. Goel A, Kunnumakkara AB and Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem. Pharmacol. 2008; 75(4): 787-809. [DOI:10.1016/j.bcp.2007.08.016]
76. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB and Aggarwal BB. Curcumin and cancer: an "old-age" disease with an "age-old" solution. Cancer Lett. 2008; 267(1): 133-164. [DOI:10.1016/j.canlet.2008.03.025]
77. Kim S-Y, Jung S-H and Kim H-S. Curcumin is a potent broad spectrum inhibitor of matrix metalloproteinase gene expression in human astroglioma cells. Biochem. Biophys. Res. Communications 2005; 337(2): 510-516. [DOI:10.1016/j.bbrc.2005.09.079]
78. Singh M and Singh N. Curcumin counteracts the proliferative effect of estradiol and induces apoptosis in cervical cancer cells. Mol. Cell. Biochem. 2011; 347: 1-11. [DOI:10.1007/s11010-010-0606-3]
79. Yu T, Li J, Qiu Y and Sun H. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) facilitates curcumin-induced melanoma cell apoptosis by enhancing ceramide accumulation, JNK activation, and inhibiting PI3K/AKT activation. Mol. Cell. Biochem. 2012; 361: 47-54. [DOI:10.1007/s11010-011-1086-9]
80. Ji C, Cao C, Lu S, Kivlin R, Amaral A, Kouttab N, Yang H, Chu W, Bi Z, Di W and Wan Y. Curcumin attenuates EGF-induced AQP3 up-regulation and cell migration in human ovarian cancer cells. Cancer Chemother Pharmacol 2008; 62(5): 857-865. [DOI:10.1007/s00280-007-0674-6]
81. Lin S-S, Lai K-C, Hsu S-C, Yang J-S, Kuo C-L, Lin J-P, Ma Y-S, Wu C-C and Chung J-G. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and-9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett. 2009; 285(2): 127-133. [DOI:10.1016/j.canlet.2009.04.037]
82. Chen Q-y, Zheng Y, Jiao D-m, Chen F-y, Hu H-z, Wu Y-q, Song J, Yan J, Wu L-j and Lv G-y. Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway. J. Nutr. Biochem. 2014; 25(2): 177-185. [DOI:10.1016/j.jnutbio.2013.10.004]
83. Chen Q-y, Jiao D-m, Wang L-f, Wang L, Hu H-z, Song J, Yan J, Wu L-j and Shi J-g. Curcumin inhibits proliferation-migration of NSCLC by steering crosstalk between a Wnt signaling pathway and an adherens junction via EGR-1. Mol. Biosyst. 2015; 11(3): 859-868. [DOI:10.1039/C4MB00336E]
84. Chen H-W, Lee J-Y, Huang J-Y, Wang C-C, Chen W-J, Su S-F, Huang C-W, Ho C-C, Chen JWJ, Tsai M-F, Yu S-L and Yang P-C. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res. 2008; 68(18): 7428-7438. [DOI:10.1158/0008-5472.CAN-07-6734]
85. Chen Q, Wang Y, Xu K, Lu G, Ying Z, Wu L, Zhan J, Fang R, Wu Y and Zhou J. Curcumin induces apoptosis in human lung adenocarcinoma A549 cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Oncol. Rep. 2010; 23(2): 397-403. [DOI:10.3892/or_00000648]
86. Chen Q-Y, Shi J-G, Yao Q-H, Jiao D-M, Wang Y-Y, Hu H-Z, Wu Y-Q, Song J, Yan J and Wu L-J. Lysosomal membrane permeabilization is involved in curcumin-induced apoptosis of A549 lung carcinoma cells. Mol. Cell. Biochem. 2012; 359(1-2): 389-398. [DOI:10.1007/s11010-011-1033-9]
87. Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T and Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J. Cell. Physiol. 2020; 235(12): 9241-9268. [DOI:10.1002/jcp.29819]
88. Lee YJ, Kim N-Y, Suh Y-A and Lee C. Involvement of ROS in curcumin-induced autophagic cell death. Korean J. Physiol. Pharmacol. 2011; 15(1): 1-7. [DOI:10.4196/kjpp.2011.15.1.1]
89. Kim JY, Cho TJ, Woo BH, Choi KU, Lee CH, Ryu MH and Park HR. Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells. Arch. Oral Biol. 2012; 57(8): 1018-1025. [DOI:10.1016/j.archoralbio.2012.04.005]
90. Zhuang W, Long L, Zheng B, Ji W, Yang N, Zhang Q and Liang Z. Curcumin promotes differentiation of glioma‐initiating cells by inducing autophagy. Cancer Sci. 2011; 103(4): 684-690. [DOI:10.1111/j.1349-7006.2011.02198.x]
91. Li B, Takeda T, Tsuiji K, Wong TF, Tadakawa M, Kondo A, Nagase S and Yaegashi N. Curcumin induces cross-regulation between autophagy and apoptosis in uterine leiomyosarcoma cells. Int. J. Gynecol. Cancer 2013; 23(5): 803-8. [DOI:10.1097/IGC.0b013e31828c9581]
92. Xiao K, Jiang J, Guan C, Dong C, Wang G, Bai L, Sun J, Hu C and Bai C. Curcumin induces autophagy via activating the AMPK signaling pathway in lung adenocarcinoma cells. J. Pharmacol. Sci. 2013; 123(2): 102-109. [DOI:10.1254/jphs.13085FP]
93. Jiao D, Wang J, Lu W, Tang X, Chen J, Mou H and Chen Q-Y. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol. Ther. Oncolytics 2016; 3: 1-28. [DOI:10.1038/mto.2016.18]
94. Pillai GR, Srivastava AS, Hassanein TI, Chauhan DP and Carrier E. Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett. 2004; 208(2): 163-170. [DOI:10.1016/j.canlet.2004.01.008]
95. Wu S-H, Hang L-W, Yang J-S, Chen H-Y, Lin H-Y, Chiang J-H, Lu C-C, Yang J-L, Lai T-Y, Ko Y-C and Chung J-G. Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade-and mitochondria-dependent pathways. Anticancer Res. 2010; 30(6): 2125-2133. [DOI:10.1177/0960327110386258]
96. Tsai M-F, Wang C-C, Chang G-C, Chen C-Y, Chen H-Y, Cheng C-L, Yang Y-P, Wu C-Y, Shih F-Y, Liu C-C, Lin H-P, Jou Y-S, Lin S-C, Lin C-W, Chen W-J, Chan W-K, Chen JJW, Yang P-C. A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J. Natl. Cancer Inst. 2006; 98(12): 825-838. [DOI:10.1093/jnci/djj229]
97. Zhu JY, Yang X, Chen Y, Jiang Y, Wang SJ, Li Y, Wang X-Q, Meng Y, Zhu M-M, Ma X, Huang C, Wu R, Xie C-F, Li X-T, Geng S-S, Wu J-S, Zhong C-Y and Han H-Y. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β‐catenin and sonic hedgehog pathways. Phytother. Res. 2017; 31(4): 680-688. [DOI:10.1002/ptr.5791]
98. Wu H, Zhou J, Zeng C, Wu D, Mu Z, Chen B, Xie Y, Ye Y and Liu J. Curcumin increases exosomal TCF21 thus suppressing exosome-induced lung cancer. Oncotarget 2016; 7: 87081-87090. [DOI:10.18632/oncotarget.13499]
99. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D and Zhang H-G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther. 2010; 18(9): 1606-1614. [DOI:10.1038/mt.2010.105]
100. Heidari S, Mahdiani S, Hashemi M and Kalalinia F. Recent advances in neurogenic and neuroprotective effects of curcumin through the induction of neural stem cells. Biotechnol. Appl. Biochem. 2020; 67(3): 430-441. [DOI:10.1002/bab.1891]
101. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko J Y, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC and Hsieh CY. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer. Res. 2001; 21(4B): 2895-900.
102. Farzaei MH, Rahimi R and Abdollahi M. The role of dietary polyphenols in the management of inflammatory bowel disease. Curr. Pharm. Biotechnol. 2015; 16(3): 196-210. [DOI:10.2174/1389201016666150118131704]
103. Gramza A, Korczak J and Amarowicz R. Tea polyphenols-their antioxidant properties and biological activity-a review. Pol. J. Food Nutr. Sci. 2005; 14(55): 219-235.
104. Feng WY. Metabolism of green tea catechins: an overview. Curr. Drug. Metab. 2006; 7(7): 755-809. [DOI:10.2174/138920006778520552]
105. Musial C, Kuban-Jankowska A and Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020; 21(5): 1744-1755. [DOI:10.3390/ijms21051744]
106. Li Q, Kakizaki M, Kuriyama S, Sone T, Yan H, Nakaya N, Mastuda-Ohmori K and Tsuji I. Green tea consumption and lung cancer risk: the Ohsaki study. Br. J. Cancer 2008; 99: 1179-1184. [DOI:10.1038/sj.bjc.6604645]
107. Fritz H, Seely D, Kennedy DA, Fernandes R, Cooley K and Fergusson D. Green tea and lung cancer: a systematic review. Integr. Cancer Ther. 2013; 12(1): 7-24. [DOI:10.1177/1534735412442378]
108. Tang N, Wu Y, Zhou B, Wang B and Yu R. Green tea, black tea consumption and risk of lung cancer: a meta-analysis. Lung Cancer 2009; 65(3): 274-283. [DOI:10.1016/j.lungcan.2008.12.002]
109. Zhong Z, Dong Z, Yang L, Chen X and Gong Z. Inhibition of proliferation of human lung cancer cells by green tea catechins is mediated by upregulation of let-7. Exp. Ther. Med. 2012; 4: 267-272. [DOI:10.3892/etm.2012.580]
110. Lu Q-Y, Jin Y, Mao JT, Zhang Z-F, Heber D, Dubinett SM and Rao J. Green tea inhibits cycolooxygenase-2 in non-small cell lung cancer cells through the induction of Annexin-1. Biochem. Biophys. Res. Commun. 2012; 427: 725-730. [DOI:10.1016/j.bbrc.2012.09.125]
111. Lee JM, Yanagawa J, Peebles KA, Sharma S, Mao JT and Dubinett SM. Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit. Rev. Oncol. Hematol. 2008; 66(3): 208-217. [DOI:10.1016/j.critrevonc.2008.01.004]
112. Milligan SA, Burke P, Coleman DT, Bigelow RL, Steffan JJ, Carroll JL Williams BJ and Cardelli JA. The green tea polyphenol EGCG potentiates the Antiproliferative activity of c-met and epidermal growth factor receptor inhibitors in non-small cell lung cancer cells. Clin. Cancer Res. 2009; 15(15): 4885-4894. [DOI:10.1158/1078-0432.CCR-09-0109]
113. Sadava D, Whitlock E and Kane SE. The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem. Biophys. Res. Commun. 2007; 360(1): 233-237. [DOI:10.1016/j.bbrc.2007.06.030]
114. Zhou H, Chen JX, Yang CS, Yang MQ, Deng Y and Wang H. Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC Genom. 2014; 15: 1-10. [DOI:10.1186/1471-2164-15-S11-S3]
115. Schönthal AH. Adverse effects of concentrated green tea extracts. Mol. Nutr. Food Res. 2011; 55(6): 874-885. [DOI:10.1002/mnfr.201000644]
116. Haghi A, Azimi HandRahimi R. A comprehensive review on pharmacotherapeutics of three phytochemicals, curcumin, quercetin, and allicin, in the treatment of gastric cancer. J. Gastrointest. Cancer 2017; 48: 314-320. [DOI:10.1007/s12029-017-9997-7]
117. Bahramsoltani R, Farzaei MH, Farahani MS and Rahimi R. Phytochemical constituents as future antidepressants: a comprehensive review. Rev. Neurosci. 2015; 26(6): 699-719. [DOI:10.1515/revneuro-2015-0009]
118. Khazeei Tabari MA, Iranpanah A, Bahramsoltani RandRahimi R. Flavonoids as promising antiviral agents against SARS-CoV-2 infection: A mechanistic review. Molecules 2021; 26(13): 1-36. [DOI:10.3390/molecules26133900]
119. Wu L, Li J, Liu T, Li S, Feng J, Yu Q, Zhang J, Chen J, Zhou Y, Ji J, Chen K, Mao Y, Wang F, Dai W, Fan X, Wu J and Guo C. Quercetin shows anti‐tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer Med. 2019; 8(10): 4806-4820. [DOI:10.1002/cam4.2388]
120. Yang J-H, Hsia T-C, Kuo H-M, Chao P-DL, Chou C-C, Wei Y-H and Chung J-G. Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab. Dispos. 2006; 34(2): 296-304. [DOI:10.1124/dmd.105.005280]
121. Balakrishnan S, Bhat F, Raja Singh P, Mukherjee S, Elumalai P, Das S, Patra CR and Arunakaran J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR‐2‐mediated pathway in breast cancer. Cell Prolif. 2016; 49: 678-697. [DOI:10.1111/cpr.12296]
122. Pradhan SJ, Mishra R, Sharma P and Kundu GC. Quercetin and sulforaphane in combination suppress the progression of melanoma through the down‑regulation of matrix metalloproteinase-9. Exp. Ther. Med. 2010; 1: 915-920. [DOI:10.3892/etm.2010.144]
123. Yang J and Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 2008; 14(6): 818-829. [DOI:10.1016/j.devcel.2008.05.009]
124. Chang J-H, Lai S-L, Chen W-S, Hung W-Y, Chow J-M, Hsiao M, Lee W-J and Chien M-H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochim. Biophys. Acta. Mol. Cell. Res. 2017; 1864(10): 1746-1758. [DOI:10.1016/j.bbamcr.2017.06.017]
125. Xingyu Z, Peijie M, Dan P, Youg W, Daojun W, Xinzheng C and Xijum Z. Quercetin suppresses lung cancer growth by targeting Aurora B kinase. Cancer Med. 2016; 5(11): 3156-3165. [DOI:10.1002/cam4.891]
126. Mukherjee AandKhuda-Bukhsh AR. Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall-cell lung-cancer cell line, A549. J. Pharmacopuncture 2015; 18(1): 19-26. [DOI:10.3831/KPI.2015.18.002]
127. Klimaszewska-Wiśniewska A, Hałas-Wiśniewska M, Izdebska M, Gagat M, Grzanka A and Grzanka D. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochem. 2017; 119(2): 99-112. [DOI:10.1016/j.acthis.2016.11.003]
128. Chakraborty S, Stalin S, Das N, Choudhury ST, Ghosh S and Swarnakar S. The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials 2012; 33(10): 2991-3001. [DOI:10.1016/j.biomaterials.2011.12.037]
129. Zheng K, Zhang G, Jiang N, Yang S, Li C, Meng Z, Guo Q and Long G. Analysis of the transcriptome of Marsdenia tenacissima discovers putative polyoxypregnane glycoside biosynthetic genes and genetic markers. Genomics 2014; 104(3): 186-193. [DOI:10.1016/j.ygeno.2014.07.013]
130. Ye B, Li J, Li Z, Yang J, Niu T and Wang S. Anti-tumor activity and relative mechanism of ethanolic extract of Marsdenia tenacissima (Asclepiadaceae) against human hematologic neoplasm in vitro and in vivo. J. Ethnopharmacol. 2014; 153(1): 258-267. [DOI:10.1016/j.jep.2014.02.035]
131. Wang XL, Li QF, Yu KB, Peng SL, Zhou Y and Ding LS. Four new pregnane glycosides from the stems of Marsdenia tenacissima. Helv. Chim. Acta 2006; 89(11): 2738-2744. [DOI:10.1002/hlca.200690245]
132. Huang Z, Wang Y, Chen J, Wang R and Chen Q. Effect of Xiaoaiping injection on advanced hepatocellular carcinoma in patients. J. Tradit. Chin. Med. 2013; 33(1): 34-38. [DOI:10.1016/S0254-6272(13)60097-7]
133. Zhu R-J, Shen X-L, Dai L-L, AI X-Y, Tian R-H, Tang R and Hu Y-J. Total aglycones from Marsdenia tenacissima increases antitumor efficacy of Paclitaxel in nude mice. Molecules 2014; 19(9): 13965-13975. [DOI:10.3390/molecules190913965]
134. Wang X, Yan Y, Chen X, Zeng S, Qian L, Ren X, Wei J, Yang X, Zhou Y, Gong Z and Xu Z. The antitumor activities of Marsdenia tenacissima. Front Oncol. 2018; 8: 473-499. [DOI:10.3389/fonc.2018.00473]
135. Yao S, To KK-W, Wang Y-Z, Yin C, Tang C, Chai S, Ke C-Q, Lin G and Ye Y. Polyoxypregnane steroids from the stems of Marsdenia tenacissima. J. Nat. Prod 2014; 77(9): 2044-2053. [DOI:10.1021/np500385b]
136. Pang X, Kang L-P, Yu H-S, Zhao Y, Han L-F, Zhang J, Xiong C-Q, Zhang L-X, Yu L-Y and Ma B-P. New polyoxypregnane glycosides from the roots of Marsdenia tenacissima. Steroids 2015; 93: 68-76. [DOI:10.1016/j.steroids.2014.11.004]
137. Huang Z, Lin H, Wang Y, Cao Z, Lin W and Chen Q. Studies on the anti‑angiogenic effect of Marsdenia tenacissima extract in vitro and in vivo. Oncol. Lett. 2013; 5: 917-922. [DOI:10.3892/ol.2013.1105]
138. Bing-Yu C, Dong C, Jian-Xin L, Kai-Qiang L, Meng-Meng J, Jing-Jing Z, Xu-Jun H, Ke H, Hou-Quan T, Xiao-Zhou M, You-Min Y, Wei Z, Meng-Hua Z and Zhen W. Marsdeniae tenacissimae extract (MTE) suppresses cell proliferation by attenuating VEGF/VEGFR2 interactions and promotes apoptosis through regulating PKC pathway in human umbilical vein endothelial cells. Chin. J. Nat. Med. 2016; 14(12): 922-930. [DOI:10.1016/S1875-5364(17)30017-1]
139. Wei F, Li S, Jing-Qian Z, Cang Z, Song Q, Ying T, Yang L, Sen-Sen L and Sheng-Tao Y. Marsdenia tenacissima extract induces G0/G1 cell cycle arrest in human esophageal carcinoma cells by inhibiting mitogen-activated protein kinase (MAPK) signaling pathway. Chin. J. Nat. Med. 2015; 13(6): 428-437. [DOI:10.1016/S1875-5364(15)30036-4]
140. Wang Z, Qi F, Cui Y, Zhao L, Sun X, Tang W and Cai P. An update on Chinese herbal medicines as adjuvant treatment of anticancer therapeutics. Biosci. Trends 2018; 12(3): 220-239. [DOI:10.5582/bst.2018.01144]
141. Hu Y, Liu P, Kang L, Li J, Li R and Liu T. Mechanism of Marsdenia tenacissima extract promoting apoptosis of lung cancer by regulating Ca2+/CaM/CaMK signaling. J. Ethnopharmacol. 2020; 251: 1-10. [DOI:10.1016/j.jep.2019.112535]
142. Zhao C, Hao H, Zhao H, Ren W, Jiao Y, An G, Sun H, Han S and Li P. Marsdenia tenacissima extract promotes gefitinib accumulation in tumor tissues of lung cancer xenograft mice via inhibiting ABCG2 activity. J. Ethnopharmacol 2020; 255: 1-15. [DOI:10.1016/j.jep.2020.112770]
143. Blackhall F, Ranson M and Thatcher N. Where next for gefitinib in patients with lung cancer? Lancet Oncol. 2006; 7(6): 499-507. [DOI:10.1016/S1470-2045(06)70725-2]
144. McKillop D, McCormick AD, Millar A, Miles GS, Phillips PJ and Hutchison M. Cytochrome P450-dependent metabolism of gefitinib. Xenobiotica 2005; 35(1): 39-50. [DOI:10.1080/00498250400026464]
145. Jiao Y-N, Wu L-N, Xue D, Liu X-J, Tian Z-H, Jiang S-T and Han S-Y. Marsdenia tenacissima extract induces apoptosis and suppresses autophagy through ERK activation in lung cancer cells. Cancer Cell Int. 2018; 18: 1-12. [DOI:10.1186/s12935-018-0646-4]
146. Hao K, Chen BY, Li KQ, Zhang Y, Li CX, Wang Y, Jiang L-X, Shen J, Guo X-c, Zhang W, Zhu M-h and Wang Z. Cytotoxicity of anti-tumor herbal Marsdeniae tenacissimae extract on erythrocytes. J. Zhejiang Univ. Sci. B 2017; 18: 597-604. [DOI:10.1631/jzus.B1600228]
147. Wu L, Guo L, Liang Y, Liu X, Jiang L and Wang L. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol. Rep. 2015; 34: 3311-3317. [DOI:10.3892/or.2015.4279]
148. Gao L, Shao T, Zheng W and Ding J. Curcumin suppresses tumor growth of gemcitabine-resistant non-small cell lung cancer by regulating lncRNA-MEG3 and PTEN signaling. Clin. Transl. Oncol. 2021; 23(7): 1386-1393. [DOI:10.1007/s12094-020-02531-3]
149. Xu X and Zhu Y. Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway. Am. J. Transl. Res. 2017; 9(8): 3633-3641.
150. Wang H, Bian S and Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis 2011; 32(12): 1881-1889. [DOI:10.1093/carcin/bgr218]
151. Lu QY, Yang Y, Jin YS, Zhang ZF, Heber D, Li FP, Dubinett SM, Sondej MA, Loo JA and Rao JY. Effects of green tea extract on lung cancer A549 cells: proteomic identification of proteins associated with cell migration. Proteomics 2009; 9(3): 757-767. [DOI:10.1002/pmic.200800019]
152. Youn HS, Jeong J-C, Jeong YS, Kim E-J and Um S-J. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol. Pharm. Bull. 2013; 36(6): 944-951. [DOI:10.1248/bpb.b12-01004]
153. Zheng S-Y, Li Y, Jiang D, Zhao J and Ge J-F. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol. Med. Rep. 2011; 5: 822-826. [DOI:10.3892/mmr.2011.726]
154. Dong Y, Yang Y, Wei Y, Gao Y, Jiang W, Wang G and Wang D. Facile synthetic nano-curcumin encapsulated Bio-fabricated nanoparticles induces ROS-mediated apoptosis and migration blocking of human lung cancer cells. Process Biochem. 2020; 95: 91-98. [DOI:10.1016/j.procbio.2020.05.011]
155. Khan MN, Haggag YA, Lane ME, McCarron PA and Tambuwala MM. Polymeric nano-encapsulation of curcumin enhances its anti-cancer activity in breast (MDA-MB231) and lung (A549) cancer cells through reduction in expression of HIF-1α and nuclear p65 (REL A). Curr. Drug Deliv. 2018; 15(2): 286-295. [DOI:10.2174/1567201814666171019104002]
156. Ibrahim S, Tagami T, Kishi T and Ozeki T. Curcumin marinosomes as promising nano-drug delivery system for lung cancer. Int. J. Pharm. 2018; 540(1-2): 40-49. [DOI:10.1016/j.ijpharm.2018.01.051]
157. Chen B-H, Hsieh C-H, Tsai S-Y, Wang C-Y and Wang C-C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci. Rep. 2020; 10: 1-11. [DOI:10.1038/s41598-020-62136-2]
158. Sun B, Hu N, Han L, Pi Y, Gao Y and Chen K. Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif. Cells Nanomed. Biotechnol. 2019; 47(1): 4012-4019. [DOI:10.1080/21691401.2019.1575844]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb