year 20, Issue 77 (1-2021)                   J. Med. Plants 2021, 20(77): 93-107 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saadatfar A, Hossein Jafari S, Tavassolian I. Improving biochemical traits, oleo-gum yield and compositions of asafoetida (Ferula assa-foetida L.) essential oil using 24-epibrassinolide in Kerman natural habitats (Iran). J. Med. Plants. 2021; 20 (77) :93-107
URL: http://jmp.ir/article-1-3010-en.html
1- Department of Medicinal Plants, Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Kerman, Iran , saadatfar.amir@uk.ac.ir
2- Post-doctoral researcher, Faculty of Natural Resources and Desert Study, Yazd University, Yazd, Iran
3- Department of Rangeland and Watershed Management, Higher Education Complex of Shirvan, Shirvan, Iran
Abstract:   (118 Views)
Background: Asafoetida (Ferula assa-foetida L.) is an endangered endemic plant which is widely used in food, cosmetics and pharmaceutical industries. It is necessary to enhance the quantity and quality of its secondary metabolites in order to meet requirements of the industries. Objective: This study investigated the impact of 24-epibrassinolide (EBL) on biochemical traits, essential oil yield and chemical compositions of Ferula assa-foetida in its natural habitat. Methods: We foliar sprayed the EBL at the concentrations of 0, 0.1, 0.5 and 1 µM with three times during a week at fully matured leaves phase. One month after treatments application, leaf sampling and gum gathering of the plants was done and the mentioned parameters were measured. Results: ANOVA results indicated that 1 µM EBL showed the best results for chlorophyll a, b, total chlorophyll, carotenoids, reduced sugar and protein contents (17.77, 13.08, 31.57, 7.50, 40.45 and 0.34 mg/g FW). The main components of the essential oil are α-pinene (8.82 %), β-pinene (11.57 %) and myrcene (1.12 %) that showed a significant increase at 1 µM of EBL. Although, EBL at 0.5 µM was proved to be the best treatment for leaf total phenol content (79.37 mg/g FW) and sulfurous compounds such as: (E)-1-propenyl sec-butyl disulfide (51.48 %), bis (1-methyl propyl) disulfide (0.9 %) and n-propyl sec-butyl disulfide (0.41 %). The highest amount of flavonoids (146.18; 162.56 mg/g FW) and essential oil yield (7.91 %; 8.16 %) were obtained at 0.5 and 1 µM EBL concentrations, respectively compared to the control (6 %). Conclusion: Our results indicated the promising and positive effects of EBL, as an environmental friendly strategy, to improve oleo-gum quantity and quality.
Full-Text [PDF 543 kb]   (95 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2020/12/9 | Accepted: 2021/02/3 | Published: 2021/03/1

References
1. Hossein Jafari S, Sepehry A, Soltanloo H and Karimian AA. Genetic differentiation between bitter and sweet asafetida plants using ISSR markers. Mol. Biol. Rep. 2018; 1-10. [DOI:10.1007/s11033-018-4565-1]
2. Prins CL, Vieira IJC and Freitas SP. Growth regulators and essential oil production. Braz. J. Plant Physiol. 2010; 22: 91-102. [DOI:10.1590/S1677-04202010000200003]
3. Coban O and Baydar NG. Brassinosteroid modifies growth and essential oil production in Peppermint (Mentha piperita L.). J. Plant Growth Regul. 2016; 1-7. [DOI:10.1007/s00344-016-9614-1]
4. Eser N and Yoldas A. Identification of heat-resistant chemical components of Ferula elaeochytris root extracts by gas chromatography-mass spectrometry. Trop. J. Pharm. Res. 2019; 18: 55-60. [DOI:10.4314/tjpr.v18i1.9]
5. Latifi E, Mohammadpour AA, Fathi B and Nourani H. Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assa-foetida oleo-gum-resin extract in streptozotocin-induced diabetic wistar rats. Biomed. Pharmacother. 2019; 110: 197-202. [DOI:10.1016/j.biopha.2018.10.152]
6. Saeidy S, Nasirpour A, Djelveh Gh, Ursu AV, Marcati A, Gardarin Ch, Laroche C, Delattre C, Pierre G, Keramat J and Michaud Ph. Rheological and functional properties of asafetida gum. Int. J. Biol. Macromol. 2018; 118: 1168-1173. [DOI:10.1016/j.ijbiomac.2018.06.177]
7. Pirmoradi MR. Morphological, Physiological, Phytochemical and Genetical evaluation of Asafoetida in Kerman Province. PhD Thesis, Horticulture Science, Faculty of Agriculture, Tarbiat Modares University, Iran; 2012: 78-98 [In Persian].
8. Angelini P, Pagiotti R, Venannzoni R and Granetti B. Antifungal and allelopathic effects of Asafoetida against Trichoderma harzianum and Pleurotus spp. Allelopathy J. 2009; 23: 357-368.
9. Dehpour A, Ebrahimzadeh N, Fazeland S and Mohammad NS. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Y Aceites 2009; 60: 12-405. [DOI:10.3989/gya.010109]
10. Kavoosi G and Rowshan V. Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: effect of collection time. Food Chem. 2013; 138: 2180-2187. [DOI:10.1016/j.foodchem.2012.11.131]
11. Iranshahy M and Iranshahi M. Traditional uses, phytochemistry and pharmacology of asafetida (Ferula assa-foetida oleo-gum-resin)-A review. J. Ethnopharmacol. 2011; 134: 1-10. [DOI:10.1016/j.jep.2010.11.067]
12. Dianat M, Saharkhiz J and Tavassolian I. Salicylic acid mitigates drought stress in Lippia citriodora L. Effects on biochemical traits and essential oil. Biocatal. Agri. Biotechno. 2016; 8: 286-293. [DOI:10.1016/j.bcab.2016.10.010]
13. Eskandari M and Eskandari A. Effects of 28-homobrassinolide on growth, photosynthesis and essential oil content of Satureja khuzestanica. Int. J. Plant Physiol. Biochem. 2013; 5: 36-41. [DOI:10.5897/IJPPB11.064]
14. Raghu K and Rao SSR. Effect of brassinosteroids on antioxidants content and radical scavenging activity of Tinospora cordifolia (Willd.) Miers ex Hook. F & Thoms. J. Med. Plants Stud. 2016; 4: 117-121.
15. Swamy KN and Rao SSR. Effect of brassinosteroids on the performance of Coleus (Coleus forskoblii). J Herbs, Spices and Med. Plants 2011; 17: 12-20. [DOI:10.1080/10496475.2011.556985]
16. Ding J, Wu JH, Liu JF, Yuan BF and Feng YQ. Improved methodology for assaying brassinosteroids in plant tissues using magnetic hydrophilic material for both extraction and derivatization. Plant Methods 2014; 10: 1-11. [DOI:10.1186/1746-4811-10-39]
17. Derevyanchuk M, Litvinovskaya R, Khripach V and Kravets V. Brassinosteroid-induced de novo protein synthesis in Zea mays under salinity and bioinformatics approach for identification of heat shock proteins. Plant Growth Regul. 2016; 78: 297-305. [DOI:10.1007/s10725-015-0093-3]
18. Pociecha E, Dziurka M, Oklestkova J and Janeczko A. Brassinosteroids increase winter survival of winter rye (Secale cereal L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regul 2016; 80: 127-135. [DOI:10.1007/s10725-016-0149-z]
19. Rajewska I, Talarek M and Bajguz A. Brassinosteroids and response of plants to heavy metals action. Front. Plant Sci. 2016; 629: 1-5. [DOI:10.3389/fpls.2016.00629]
20. Sharma P and Bharadwaj R. Effect of 24-epibrassinolide on seed germination, seedling growth and heavy metal uptake in Brassica juncea L. Gen. Appl. Plant Physiol. 2007; 33: 59-73.
21. Tao Y, Yu QX, Zhou YH, Shi K, Zhou J and Yu JQ. Application of 24-epibrassinolide decreases the susceptibility to cucumber mosaic virus in zucchini (Cucurbita pepo L.). Sci. Hortic. 2015; 195: 116-123. [DOI:10.1016/j.scienta.2015.09.005]
22. Clouse SD. A history of brassinosteroid research from 1970 through 2005: thirty-five years of phytochemistry, physiology, genes, and mutants. J. Plant Growth Regul. 2015; 34: 828-844. [DOI:10.1007/s00344-015-9540-7]
23. Ramakrishna B and Rao SSR. 24-Epibrassinolide alleviated zinc-induced oxidative stress in radish (Raphanus sativus L.) seedlings by enhancing antioxidative system. Plant Growth Regul. 2012; 68: 249-259. [DOI:10.1007/s10725-012-9713-3]
24. Saini Sh, Sharma I and Pati PK. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front. Plant Sci. 2015; 950: 1-17. [DOI:10.3389/fpls.2015.00950]
25. Vriet C, Russinova E and Reuzeau C. Boosting crop yields with plant steroids. Plant Cell 2012; 24: 842-857. [DOI:10.1105/tpc.111.094912]
26. Sasse JM. Physiological actions of brassinosteroids: an update. J. Plant Growth Regul. 2003; 22: 276-288. [DOI:10.1007/s00344-003-0062-3]
27. Xia XJ, Huang YY, Wang L, Huang LF, Yu YL, Zhou YH and Yu JQ. Pesticides induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pestic. Biochem. Physiol. 2006; 86: 42-48. [DOI:10.1016/j.pestbp.2006.01.005]
28. Akram A, Khan MA, Younis A and Ashfaq M. Exogenous application of 24-epibrassinolide on morph-physiological, Biochemical attributes and essential oil contents of Jasminum sambac L. Pak. J. Agri. Sci. 2014; 51:881-886.
29. Lichtenthaler HK, Bukhardt G, Kuhn G and Prenzel U. Light induced accumulation and stability of chlorophyll and chlorophyll-protein during chloroplast development in radish seedlings. Z. Naturforsch. 1981; 36: 421-430. [DOI:10.1515/znc-1981-5-614]
30. Swain T and Hillis WE. The phenolic constituents of Prunus domestica L. the quantitative analysis of phenolic constituents. J. Sci. Food Agri. 1959; 10: 63-68. [DOI:10.1002/jsfa.2740100110]
31. Nelson NJ. Colorimetric analysis of sugars, In: Collowick S.P. and N.O. Kaplan (Eds), Methods Enzymol 3. Academic Press, New York; 1957: 85-86.
32. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. Protein measurement with folin phenol reagent. J. Biol. Chem. 1951; 193: 265-275. [DOI:10.1016/S0021-9258(19)52451-6]
33. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Fourth ed., Illinois, USA: Allured Publishing Corporation; 2007: 809 p.
34. Bajguz A and Czerpak R. Physiological and biochemical role of brassinosteroids and their structure activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). Plant Growth Regul. 1998; 17: 131-139. [DOI:10.1007/PL00007026]
35. Cevahir G, Yentur S, Eryilmaz F and Yilmazer N. Influence of brassinosteroids on pigment content of Glycine max L. (soybean) grown in dark and light. J. Appl. Biol. Sci. 2008; 2: 23-28.
36. Swamy KN and Rao SSR. Effect of 24-epibrassinolide on growth, photosynthesis and essential oil content of Pelargonium graveolens (L.) Herit. Russ. J. Plant Physiol. 2009; 56: 616-620. [DOI:10.1134/S1021443709050057]
37. Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF and Noguѐs S. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J. Exp. Bot. 2004; 55: 1135- 1143. [DOI:10.1093/jxb/erh124]
38. Cai J, Luo F, Zhao Y, Zhou Q, Wei B, Zhou X and Ji S. 24-Epibrassinolide treatment regulates broccoli yellowing during shelf life. Postharvest. Biol. Tech. 2019; 154: 87-95. [DOI:10.1016/j.postharvbio.2019.04.019]
39. Naeem M, Idrees M, Alam MM, Aftab T, Masroor M, Khan A and Moinuddin M. Brassinosteroid-mediated enrichment in yield attributes, active constituents and essential oil production in Mentha arvensis L., Russ. Agri. Sci. 2012; 38: 106-113. [DOI:10.3103/S1068367412020176]
40. Naeem M, Idrees M, Aftab T, Alam MM, Masroor M, Khan A, Uddin M and Varshney L. Employing depolymerized sodium alginate, triacontanol and 28-homobrassinolide in enhancing physiological activities, production of essential oil and active components in Mentha arvensis L. Ind. Crop. Prod. 2014; 55: 272-279. [DOI:10.1016/j.indcrop.2014.01.052]
41. Ahammed GJ, Zhou YH, Xia XJ, Mao WH, Shi K and Yu JQ. Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biol. Plantarum. 2013; 57: 154-158. [DOI:10.1007/s10535-012-0128-9]
42. Koca N and Karaman S. The effects of plant growth regulators and L-phenylalanine on phenolic compounds of sweet basil. Food Chem. 2014; 1-17.
43. Bajguz A. Effect of brassinosteroids on nucleic acids and protein content in cultured cell of Chlorella vulgaris. Plant Physiol. Biochem. 2000; 3: 209-215. [DOI:10.1016/S0981-9428(00)00733-6]
44. Fariduddin Q, Ahmed A and Hayat S. Response of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. J. Plant Biol. 2004; 48: 465-468. [DOI:10.1023/B:BIOP.0000041106.77930.d6]
45. Li P, Chen L, Zhou Y, Xia X, Shi K, Chen Zh and Yu J. Brassinosteroids-induced systematic stress tolerance was associated with increased transcripts of several defence-related genes in the Phloem in Cucumis sativus. PLOS ONE 2013; 8: 1-8. [DOI:10.1371/journal.pone.0066582]
46. Evergetis E, Koulocheri SD and Haroutounian SA. Exploitation of Apiaceae family plants as valuable renewable source of essential oils containing crops for the production of fine chemicals: Part II. Ind. Crop. Prod. 2015; 64: 59-67. [DOI:10.1016/j.indcrop.2014.10.069]
47. Mollaei S, Farahmand H and Tavassolian I. The effects of 24-epibrassinolide corm priming and foliar spray on morphological, biochemical and postharvest traits of sword lily. Horticul. Environ. Biotech. 2018; 59 (3): 325-333. [DOI:10.1007/s13580-018-0033-z]
48. Khripach V, Zhabinskii V and Groot AD. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 2000; 86: 441-447. [DOI:10.1006/anbo.2000.1227]
49. Xia XJ, Huang LF, Zhou YH, Mao WH, Shi K, Wu JX, Asami T, Chen Z and Yu JQ. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta. 2009; 230: 1185-1196. [DOI:10.1007/s00425-009-1016-1]
50. Vert G, Walcher CL, Chory J, and Nemhauser JL. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc. Natl. Acad. Sci. USA 2008; 105: 9829-9834. [DOI:10.1073/pnas.0803996105]
51. Hamid AA, Aiyelaagbe OO and Usman LA. Essential oils: its medicinal and pharmacological uses. Int. J. Curr. Res. 2011; 33: 86-98.
52. Youssef AA and Talaat IM. Physiological effect of Brassinosteroids and Kinetin on the growth and chemical constituents of lavender plant. Ann. Agri. Sci. (Cairo) 1998; 43: 261-272.
53. Yang YH, Zhang H and Cao RQ. Effect of brassinolide on growth and shikonin formation in cultured Onosma paniculatum cells. J. Growth. Regul. 1999; 18: 89-92. [DOI:10.1007/PL00007054]
54. Wang JW, Kong FX and Tan RX. Improved artemisin accumulation in hairy root cultures of Artemisia annua by (22S, 23S)-homobrassinolide. Biotech. Let. 2002; 24: 1573-1577.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb