XML Persian Abstract Print

1- Pyatigorsk Medical and Pharmaceutical Institute, Pyatigorsk, Russia , pozdniackow.dmitry@yandex.ru
2- Pyatigorsk Medical and Pharmaceutical Institute, Pyatigorsk, Russia
Abstract:   (22 Views)
Background: Stress is an integral part of human life and leads to maladaptation of the organism and needs rational pharmacological correction. Objective: The purpose of this experiment was to evaluate the adaptogenic potential of European mistletoe extracts. Methods: The work was performed on Balb/c mice. The test-objects were ethanol and aqueous extracts of European mistletoe (Viscum album L., Santalaceae) collected from pear and black poplar in dose 100 mg/kg (P.O.). Physical overloads were modeled in the forced swimming test. The analyzed parameters were: the duration of animals swimming, changes in the parameters of mitochondrial respiration, the concentration of ATP, activity of caspase-3, and apoptosis-inducing factor in the muscles and lactic acid in the blood serum of animals. The state of the pro / antioxidant system and acute toxicity of the test-extracts was also evaluated. Results: The study found that the LD50 of the test-extracts was more than 5000 mg/kg (P.O.). Ethanol extracts (40 and 70 %) with a single administration had the greatest impact on the physical strain of mice. In the course administration of 40 % ethanol mistletoe extracts the swimming time of mice was increased by 3.4 and 5.05 times
(P < 0.05) from black poplar and pear, respectively. Also, the use of 40 % extracts contributed to the normalization of the pro/antioxidant balance, the restoration of the cell energy metabolism, and the decrease of the intensity of the apoptotic reactions. Conclusion: The study showed that the 40 % ethanol extracts from European mistletoe (host plants: pear and black poplar) potentially can be used as adaptogenic agents.
Full-Text [DOCX 305 kb]   (8 Downloads)    
Type of Study: Research | Subject: Pharmacology & Toxicology
Received: 2020/05/24 | Accepted: 2020/11/14

1. Puri S, Kumar B, Debnath J, Tiwari P, Salhan M, Kaur M and Mittal A. Comparative pharmacological evaluation of adaptogenic activity of Holoptelea integrifolia and Withania somnifera. IJDDR 2011; 3(1): 84-98.
2. Adkar PP, Jadhav PP, Ambavade SD, Bhaskar VH and Shelke T. Adaptogenic activity of lyophilized hydroethanol extract of Pandanus odoratissimus in Swiss albino mice. Int. Sch. Res. Notices. 2014. [DOI:10.1155/2014/429828]
3. Stults-Kolehmainen MA and Sinha R. The effects of stress on physical activity and exercise. Sports Med. 2014; 44(1): 81-121. [DOI:10.1007/s40279-013-0090-5]
4. Esimone CO, Adikwu MU, Nworu C, Okoye SC and Odimegwu DC. Adaptogenic potentials of Camellia sinensis leaves, Garcinia kola and Kola nitida seeds. Scien. Res. and Ess. 2007; 2(7): 232-237.
5. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 2007; 87(3): 873-904. [DOI:10.1152/physrev.00041.2006]
6. Finnell JE, Lombard CM, Padi AR, Moffitt CM, Wilson LB, Wood CS and Wood SK. Physical versus psychological social stress in male rats reveals distinct cardiovascular, inflammatory and behavioral consequences. PLOS One 2017; 12(2): e0172868. [DOI:10.1371/journal.pone.0172868]
7. Panossian A, Hambardzumyan M, Hovhanissyan A and Wikman G. The adaptogens rhodiola and schizandra modify the response to immobilization stress in rabbits by suppressing the increase of phosphorylated stress-activated protein kinase, nitric oxide and cortisol. D. Targ. Ins. 2007; 2: 39-54. [DOI:10.1177/117739280700200011]
8. Liao LY, He YF, Li L, Meng H, Dong YM, Yi F and Xiao PG. A preliminary review of studies on adaptogens: comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chin. Med. 2018; 13: 57. [DOI:10.1186/s13020-018-0214-9]
9. Panossian A and Wikman G. Effects of adaptogens on the central nervous system and the molecular mechanisms associated with their stress-protective activity. Pharmaceuticals (Basel) 2010; 3(1): 188-224. [DOI:10.3390/ph3010188]
10. Schriner SE, Avanesian A, Liu Y, Luesch H and Jafari M. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses. Free Radic. Biol. Med. 2009; 47(5): 577-584. [DOI:10.1016/j.freeradbiomed.2009.05.025]
11. Marvibaigi M, Supriyanto E, Amini N, Abdul Majid FA and Jaganathan SK. Preclinical and clinical effects of mistletoe against breast cancer. Biomed. Res. Int. 2014; 2014: 785479. [DOI:10.1155/2014/785479]
12. Büssing A. Mistletoe, the Genus Viscum, Amsterdam: Harwood Academic Publishers; 2000. [DOI:10.1201/9780203304716]
13. Steele ML, Axtner J, Happe A, Kröz M, Matthes H and Schad F. Safety of intravenous application of mistletoe (Viscum album L.) preparations in oncology: an observational study. Evid-Based Compl. Alt. 2014. [DOI:10.1155/2014/236310]
14. Tröger W, Galun D, Reif M, Schumann A, Stanković N and Milićević M. Quality of life of patients with advanced pancreatic cancer during treatment with mistletoe: a randomized controlled trial. Dtsch. Arztebl. Int. 2014; 111 (29-30): 493-502. [DOI:10.3238/arztebl.2014.0493]
15. Moon JM, Chung YJ, Chae B, Kang HJ, Cho HH, Kim JH and Kim MR. Effect of mistletoe on endometrial stromal cell survival and vascular endothelial growth factor expression in patients with endometriosis. Int. J. Med. Sci. 2018; 15(13): 1530-1536. [DOI:10.7150/ijms.28470]
16. Steele ML, Axtner J, Happe A, Kröz M, Matthes H and Schad F. Adverse drug reactions and expected effects to therapy with subcutaneous mistletoe extracts (Viscum album L.) in cancer patients. Evid-Based Compl. Alt. 2014; 2014: 724258. [DOI:10.1155/2014/724258]
17. Grinkevich NI. Chemical analysis of medicinal plants. M.: Higher school 1983. p. 176 [in Russian].
18. Pozdnyakov D, Voronkov A. and Rukovitsyna V. Chromon-3-aldehyde derivatives restore mitochondrial function in rat cerebral ischemia. Iran. J. Basic Med. Sci. 2020; 23(9): 1172-1183.
19. Voronkov AV, Gerashchenko AD, Pozdnyakov DI and Khusainov DV. Effects of various aversive environments on oxygen consumption of muscle and blood in mice under conditions of the "forced swimming" test. Pharmacy & Pharmacology 2019; 7(3): 148-157. [DOI:10.19163/2307-9266-2019-7-3-148-157]
20. Voronkov AV, Pozdnyakov DI, Nigaryan SA, Khouri EI, Miroshnichenko KA, Sosnovskaya AV and Olokhova EA. Evaluation of the mitochondria respirometric function in the conditions of pathologies of various geneses. Pharmacy & Pharmacology 2019; 7(1): 20-31. [DOI:10.19163/2307-9266-2019-7-1-20-31]
21. Gavrilov VB. Spectrophotometric determination of the content of lipid hydroperoxides in blood plasma. Lab. work. 1983; 3: 33-35 [in Russian].
22. Stalnaya ID and Garishvili TG. Method for determination of malondialdehyde using TBA. Modern methods in biochemistry under. Medicine publisher, 1977: 44-46 [in Russian].
23. Korolyuk MA. Method for determination of catalase activity. Lab. work. 1988; 1: 16-19 [in Russian].
24. Woolliams JA, Wiener G, Anderson PH and McMurray CH. Variation in the activities of glutathione peroxidase and superoxide dismutase and in the concentration of copper in the blood in various breed crosses of sheep. Res. Vet. Sci. 1983; 34(3): 253-256. [DOI:10.1016/S0034-5288(18)32219-7]
25. Pierce S and Tappel AL. Glutathione peroxidase activities from rat liver. Biochim. Biophys. Acta. 1978; 523(1): 27-36. [DOI:10.1016/0005-2744(78)90005-0]
26. Agorastos A, Pervanidou P, Chrousos GP and Baker DG. Developmental trajectories of early life stress and trauma: a narrative review on neurobiological aspects beyond stress system dysregulation. Front. Psychiatry 2019; 10: 118. [DOI:10.3389/fpsyt.2019.00118]
27. Abbiss CR, Peiffer JJ, Meeusen R and Skorski S. Role of ratings of perceived exertion during self-paced exercise; what are we actually measuring? Sports Med. 2015; 45(9): 1235-1243. [DOI:10.1007/s40279-015-0344-5]
28. Joyner MJ and Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol. Rev. 2015; 95(2): 549-601. [DOI:10.1152/physrev.00035.2013]
29. Hamburg NM and Balady GJ. Exercise rehabilitation in peripheral artery disease Functional impact and mechanisms of benefits. Circulation 2011; 123(1): 87-97. [DOI:10.1161/CIRCULATIONAHA.109.881888]
30. Eitenmuller I, Volger O, Kluge A, Troidl K, Barancik M, Cai WJ, Heil M, Pipp F, Fischer S, Horrevoets AJG, Schmitz-Rixen T and Schaper W. The range of adaptation by collateral vessels after femoral artery occlusion. Circ. Res. 2006; 99(6): 656-662. [DOI:10.1161/01.RES.0000242560.77512.dd]
31. Shuvaev VV, Brenner JS and Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J. Control Release 2015; 219: 576-595. [DOI:10.1016/j.jconrel.2015.09.055]
32. Smith AR. and Hagen TM. Vascular endothelial dysfunction in aging: loss of phosphorylation of Akt-dependent endothelial nitric oxide synthase and partial recovery by (R)-alpha-lipoic acid. Biochem. Soc. Trans. 2003; 31(6): 1447-1449. [DOI:10.1042/bst0311447]
33. Su JB. Vascular endothelial dysfunction and pharmacological treatment. World J. Cardiol. 2015; 7(11): 719-741. doi: 10.4330/wjc.v7.i11. 719. [DOI:10.4330/wjc.v7.i11.719]
34. Radi R. Peroxynitrite, a stealthy biological oxidant. J. Biol. Chem. 2013; 288(37): 26464-26472. [DOI:10.1074/jbc.R113.472936]
35. Yang TC, Chen YJ, Chang SF, Chen CH, Chang PY and Lu SC. Malondialdehyde mediates oxidized LDL-induced coronary toxicity through the Akt-FGF2 pathway via DNA methylation. J. Biomed. Sci. 2014; 21(1): 11. [DOI:10.1186/1423-0127-21-11]
36. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A and Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J. Muscle Res. Cell Motil. 2015; 36(6): 377-393. [DOI:10.1007/s10974-015-9438-9]
37. Boengler K, Kosiol M, Mayr M, Schulz R and Rohrbach S. Mitochondria and aging: role in the heart, skeletal muscle, and adipose tissue. J. Cachexia Sarcopenia Muscle 2017; 8(3): 349-369. [DOI:10.1002/jcsm.12178]
38. Dai DF, Rabinovitch PS, Ungvari Z, Sinclair D and North B. Mitochondria and cardiovascular aging. Circ. Res. 2012; 110(8): 1109-1124. [DOI:10.1161/CIRCRESAHA.111.246140]
39. Hollander JM, Thapa D and Shepherd DL. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am. J. Physiol. Heart Circ. Physiol. 2014; 307(1): H1-14. [DOI:10.1152/ajpheart.00747.2013]
40. Seely D and Singh R. Adaptogenic potential of a polyherbal natural health product: report on a longitudinal clinical trial. Evid-Based Compl. Alt. 2007; 4(3): 375-380. [DOI:10.1093/ecam/nel101]
41. Somarathna KIWK, Chandola HM, Ravishankar B, Pandya KN, Attanayake AMP and Ashok BK. Evaluation of adaptogenic and anti-stress effects of Ranahamsa Rasayanaya- a Sri Lankan classical Rasayana drug on experimental animals. Ayu. 2010; 31(1): 88-92. [DOI:10.4103/0974-8520.68201]
42. Watson DM and Herring M. Mistletoe as a keystone resource: an experimental test. Proc. R. Soc. B 2012; 279: 3853-3860. [DOI:10.1098/rspb.2012.0856]
43. Peake JM, Suzuki K and Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J. Nutr. Biochem. 2007; 18(6): 357-371. [DOI:10.1016/j.jnutbio.2006.10.005]
44. Finsterer J and Drory VE. Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue. BMC Musculoskelet. Disord. 2016; 17: 40. [DOI:10.1186/s12891-016-0869-2]
45. Xu X, Ding Y and Yang Y. β-Glucan salecan improves exercise performance and displays anti-fatigue effects through regulating energy metabolism and oxidative stress in mice. Nutrients 2018; 10(7): 858. [DOI:10.3390/nu10070858]
46. Theofilidis G, Bogdanis GC, Koutedakis Y and Karatzaferi C. Monitoring exercise-induced muscle fatigue and adaptations: making sense of popular or emerging indices and biomarkers. Sports (Basel). 2018; 6(4): 153. [DOI:10.3390/sports6040153]
47. Leist M, Single B, Castoldi AF, Kühnle S and Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 1997; 185(8): 1481-1486. [DOI:10.1084/jem.185.8.1481]
48. Leitner LM, Wilson RJ, Yan Z and Gödecke A. Reactive oxygen species/nitric oxide mediated inter-organ communication in skeletal muscle wasting diseases. Antioxid. Redox Signal. 2017; 26(13): 700-717. [DOI:10.1089/ars.2016.6942]
49. Pérez-Garijo A and Steller H. Spreading the word: non-autonomous effects of apoptosis during development, regeneration and disease. Development 2015; 142(19): 3253-3262. [DOI:10.1242/dev.127878]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb