year 19, Issue 76 (11-2020)                   J. Med. Plants 2020, 19(76): 99-109 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amirkavei Najafabadi B, Qavami N, Ebrahimi M A, Ebrahimi P, Zarinpanjeh N. Enhancement of Taxol production by applying amino acid complex along with chitosan in suspension culture of Taxus baccata L.. J. Med. Plants 2020; 19 (76) :99-109
1- Department of Agricultural Biotechnology, Payam Noor University, Tehran, Iran
2- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
3- Agricultural Sciences and Food Industries Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran
4- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran ,
Abstract:   (3360 Views)
Background: Taxol (Paclitaxel) has been highly recommended to control and treat a wide range of cancers. Taxus baccata L. is primary and natural origin of Taxol. Objective: Due to severe restriction and prohibition of cutting T. baccata, the alternative way for Taxol production is to apply in vitro culture method which was implemented at the current study. Here, for the first time, the effect of amino acid complex as elicitor along with chitosan in cell suspension culture of T. baccata for enhancing Taxol production was studied. Methods: Young leaves of T. baccata as explants were cultured in different callus induction treatments. At the next step, the calli from the best callus induction treatment were transferred to cell suspension cultures containing chitosan and amino acid complex alone or in combination with each other. Taxol content in treatments were measured by HPLC. Results: MS medium supplemented with 2,4-D at 2 mg/L and NAA at 1 mg/L proved to be the best treatment of callus induction (100 %), fresh weight (495 mg) and dry weight (272 mg) of calli. Also, HPLC analysis confirmed the maximum production of Taxol (1.96 mg/g) in MS medium having 2 ml/L amino acids complex with 10 mg/L chitosan. Conclusion: Applying amino acid complex as elicitor with chitosan is suggested for enhancing Taxol production in cell suspension culture of T. baccata.
Full-Text [PDF 450 kb]   (1502 Downloads)    
Type of Study: Research | Subject: Biotechnology
Received: 2020/02/4 | Accepted: 2020/11/2 | Published: 2020/12/1

1. Modarresi-Darreh B, Kamali K, Kalantar SM, Dehghanizadeh H and Aflatoonian B. Comparison of synthetic and natural Taxol extracted from Taxus plant (Taxus baccata) on growth of ovarian cancer cells under in vitro condition. Eurasia J. Biosci. 2018; 12: 413-418.
2. Kasaei A, Mobini‑Dehkordi M, Mahjoubi F and Saffar B. Isolation of taxol-producing endophytic fungi from Iranian yew through novel molecular approach and their effects on human breast cancer cell line. Curr. Microbiol. 2017; 74: 702-709.
3. Jaziri M, Zhiri A, Guo YW, Dupont JP, Shimomura K, Hamada H, Vanhaelen M and Homès J. Taxus sp. cell, tissue and organ cultures as alternative sources for taxoids production: a literature survey. Plant Cell Tissue Organ Cult. 1996; 46: 59-75. [DOI:10.1007/BF00039697]
4. Sabater-Jara A, Tudela L and López-Pérez A. In vitro culture of Taxus sp.: strategies to increase cell growth and taxoid production. Phytochem. Rev. 2010; 9: 343-356. [DOI:10.1007/s11101-010-9167-z]
5. Zhong JJ. Plant cell culture for production of paclitaxel and other taxanes. J. Biosci. Bioeng. 2002; 94: 591-599. [DOI:10.1016/S1389-1723(02)80200-6]
6. Navia-Osorio A, Garden H, Cusidó R, Palazón J, Alfermann A and Piñol M. Production of paclitaxel and baccatin III in a 20-L airlift bioreactor by a cell suspension of Taxus wallichiana. Planta Med. 2002; 68: 336-340. [DOI:10.1055/s-2002-26739]
7. Vidal-Limon HR, Almagro L, Moyano E, Palazon J, Pedreño MA and Cusido RM. Perfluorodecalins and hexenol as inducers of secondary metabolism in Taxus media and Vitis vinifera cell cultures. Front Recent. Dev. Plant Sci. 2018; 9: 1-15. [DOI:10.3389/fpls.2018.00335]
8. Namdeo AG. Plant Cell Elicitation for Production of Secondary Metabolites: A Review. Pharmacognosy Rev. 2007; 1: 69-79.
9. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM and Palazon J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecule. 2016; 21: 1-24. [DOI:10.3390/molecules21020182]
10. Qavami N, NaghdiBadi H, Labbafi M, Mehregan M, Tavakoli M and Mehrafarin A. Overview on chitosan as a valuable ingredient and biostimulant in pharmaceutical industries and agricultural products. Trakia J. Sci. 2017; 1: 83-91. [DOI:10.15547/tjs.2017.01.014]
11. Mendhulkar VD and Vakil MMA. Chitosan and Aspergillus niger mediated elicitation of total flavonoids in suspension culture of Andrographis paniculata (Burm. f.) Nees. Int. J. Pharma. Bio. Sci. 2013; 4: 731-740.
12. Ahmed SA and Baig MMV. Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi J. Biol. Sci. 2014; 21: 499-504. [DOI:10.1016/j.sjbs.2013.12.008]
13. Meier P, Hotti H and Rischer H. Elicitation of furanocoumarins in poison hemlock (Conium maculatum L.) cell culture. Plant Cell Tissue Organ Cult. 2015; 123: 443-453. [DOI:10.1007/s11240-015-0847-7]
14. Kitisripanya T, Komaikul J, Tawinkan N, Atsawinkowit C and Putalun W. Dicentrine production in callus and cell suspension cultures of Stephania venosa. Nat. Prod. Commun. 2013; 8: 443-445. [DOI:10.1177/1934578X1300800408]
15. Tachinbana S, Muranaka T and Itoh K. Effect of elicitors and a biogenetic precursor on paclitaxel production in cell suspension cultures of Taxus cuspidata var. nana. Pakistan J. Biol. 2007; 10: 2856-2861. [DOI:10.3923/pjbs.2007.2856.2861]
16. Fett-Neto AG, Melanson SJ, Nicholson SA, Pennington JJ and DiCosrn F. Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures of Taxus cuspidate. Biotechnol. Bioeng. 1994; 44: 967-971. [DOI:10.1002/bit.260440813]
17. Kim BJ, Gibson DM and Shuler ML. Effect of the plant peptide regulator, phytosulfokine-a, on the growth and Taxol production from Taxus sp. suspension cultures. Biotechnol. Bioeng. 2006; 95: 8-14. [DOI:10.1002/bit.20934]
18. Sarmadi M, Karimi N, Palazón J, Ghassempour A and Mirjalili MH. The effects of salicylic acid and glucose on biochemical traits and taxane production in a Taxus baccata callus culture. Plant Physiol. Biochem. 2018; 132: 271-280. [DOI:10.1016/j.plaphy.2018.09.013]
19. Murashige T and Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962; 15: 473-497. [DOI:10.1111/j.1399-3054.1962.tb08052.x]
20. Brunakova K, Babincova Z and Cellárová E. Selection of callus cultures of Taxus baccata L. as a potential source of paclitaxel production. Eng Life Sci. 2004; 4: 465-469. [DOI:10.1002/elsc.200420050]
21. Khosroushahi AY, Valizadeh M, Ghasempour A, Khosrowshahli M, Naghdibadi H, Dadpour MR and et al. Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biol Int. 2006; 30: 262-269. [DOI:10.1016/j.cellbi.2005.11.004]
22. Brunakova K, Babincova Z and Cellárová E. Production of taxanes in callus and suspension cultures of Taxus baccata L. In: Hvoslef-Eide AK, Preil W, editors. Liquid culture systems for in vitro plant propagation. Springer. Netherlands. 2005: 567-574. [DOI:10.1007/1-4020-3200-5_43]
23. Malika S, Cusidób RM, Mirjalili MH, Moyanod E, Palazónb J and Bonfillb M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochem. 2011; 46: 23-34. [DOI:10.1016/j.procbio.2010.09.004]
24. Palazon J, Cusido RM, Bonfill M, Morales C and Pinol MT. Inhibition of paclitaxel and baccatin III accumulation by mevinolin and fosmidomycin in suspension cultures of Taxus baccata. J. Bitech. 2003; 101: 157-163. [DOI:10.1016/S0168-1656(02)00318-8]
25. Wu J, Wang C and Mei X. Stimulation of taxol production and excretion in Taxus spp cell cultures by rare earth chemical lanthanum. J. Bitech. 2001; 85: 67-73. [DOI:10.1016/S0168-1656(00)00383-7]
26. Baenas N, Garcia-Viguera C and Moreno DA. Elicitation: A tool for enriching the bioactive composition of foods. Molecules. 2014; 19: 13541-13563. [DOI:10.3390/molecules190913541]
27. Wang YD, Wu JC and Yuan YJ. Salicylic acid-induced taxol production and isopentenyl pyrophosphate biosynthesis in suspension cultures of Taxus chinensis var. mairei. Cell Biol. Int. 2007; 31: 1179-1183. [DOI:10.1016/j.cellbi.2007.03.038]
28. Zhang JF, Gong S and Guo ZG. Effects of different elicitors on 10-deacetylbaccatin III-10-O-acetyltransferase activity and cytochrome P450 monooxygenase content in suspension cultures of Taxus cuspidate cells. Cell Biol. Int. Rep. 2010; 18: 7-13. [DOI:10.1042/CBR20110001]
29. Badi, HN, Abdoosi V and Farzin N. New approach to improve taxol biosynthetic. Trakia J. Sci. 2015; 2: 115-124. [DOI:10.15547/tjs.2015.02.002]
30. Sabater-Jara AB, Onrubia M, Moyano E, Bonfill M, Palazón J, Pedreño MA and Cusidó RM. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus x media cell cultures. Plant Biotechnol. J. 2014; 12: 1075-1084. [DOI:10.1111/pbi.12214]
31. Sarmadi M, Karimi N, Palazón J, Ghassempour A and Mirjalili MH. Improved effects of polyethylene glycol on the growth, antioxidative enzymes activity and taxanes production in a Taxus baccata L. callus culture. Plant Cell, Tissue and Organ Cult. 2019; 137: 319-328. [DOI:10.1007/s11240-019-01573-y]
32. Zhang CH, Mei XG, Liu L and Yu LJ. Enhanced paclitaxel production induced by the combination of elicitors in cell suspension cultures of Taxus chinensis. Biotechnol. Lett. 2000; 22: 1561-1564.
33. Zhang CH and Xu HB. Improved paclitaxel production by in situ extraction and elicitation in cell suspension cultures of Taxus chinensis. Biotechnol. Lett. 2001; 23: 189-193.
34. Rinaudo M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006; 31: 603-632. [DOI:10.1016/j.progpolymsci.2006.06.001]
35. Huffaker A, Dafoe NJ and Schmelz EA. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol. 2011; 155: 1325-1338. [DOI:10.1104/pp.110.166710]
36. Huffaker A and Ryan CA. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc. Natl. Acad. Sci. 2007; 104: 10732-10736. [DOI:10.1073/pnas.0703343104]
37. Du Jardin P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015; 196: 3-14. [DOI:10.1016/j.scienta.2015.09.021]
38. Rouphael Y, Cardarelli M and Colla G. Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Sci. Hortic. 2015; 188: 97-105. [DOI:10.1016/j.scienta.2015.03.031]
39. Rai VK. Role of amino acids in plant responses to stresses. Biologia Plantarum. 2002; 45: 481-487. [DOI:10.1023/A:1022308229759]
40. Calvo P, Nelson L and Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil. 2014; 383: 3-41. [DOI:10.1007/s11104-014-2131-8]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb