year 19, Issue 76 (11-2020)                   J. Med. Plants 2020, 19(76): 69-88 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadi M, Nejad Ebrahimi S, Hatami M, Hadian J. Changes in secondary metabolite contents of Arnica chamissonis Less. in response to different harvest time, flower developmental stages and drying methods. J. Med. Plants. 2020; 19 (76) :69-88
URL: http://jmp.ir/article-1-2782-en.html
1- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Tehran, Iran
2- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Tehran, Iran
3- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran , m-hatami@araku.ac.ir
Abstract:   (564 Views)
Background: The relative values of secondary metabolites may be impacted by harvesting time and post-harvest drying methods. Objective: The effects of various harvesting stages of flower and drying methods were investigated on the quality and quantity of secondary metabolites of A. chamissonis Less. grown in the field. Methods: The flowers were harvested in early May, June and July from four different developmental stages (stage 1: opening bud; stage 2: all radial florets or less than half of tubular florets opened; stage 3: all radial and tubular florets opened; stage 4: radial florets withering and seed formation). Also, the maximum collection of inflorescences during two years of trial was considered for drying method treatments (shade and sun drying, oven drying at 40 and 50 °C, and microwave drying at 500 and 1000 W power). Results: Results showed that the highest and the lowest total phenols were obtained in the second and first harvest date at flower maturity stages of 3 and 4, respectively. However, the highest luteolin and apigenin contents were obtained in the third harvest time at flower development stage 1. In the second experiment, the flower heads treated by shade contained the highest total phenols content followed by oven drying at 40°C. Moreover, oven drying was the most favorable method for preserving of other main secondary metabolites including total flavonoid, rutin, luteolin and apigenin. Conclusion: Different harvesting dates at various flower bud phenological stages had significant effect on total phenols, flavonoids, rutin, luteolin and apigenin contents.
Full-Text [PDF 1177 kb]   (203 Downloads)    
Type of Study: Research | Subject: Agriculture & Ethnobotany
Received: 2020/01/3 | Accepted: 2020/11/1 | Published: 2020/12/1

References
1. Maguire B. A monograph of the genus Arnica. Brittonia. 1943; 4: 386-510. [DOI:10.2307/2804900]
2. Gawlik-Dziki U, Swieca M, Sugier D and Cichocka J. Seeds of Arnica montana and Arnica chamissonis as a potential source of natural antioxidants. Herba. Pol. 2009; 55: 60-71.
3. Ganzera M, Egger C, Zidorn C and Stuppner H. Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography. Anal. Chim. Acta. 2008; 614: 196-200. [DOI:10.1016/j.aca.2008.03.023]
4. Gawlik-Dziki U, Swieca M, Sugier D and Cichocka J. Comparison of in vitro lipoxygenase, xanthine oxidase inhibitory and antioxidant activity of Arnica montana and Arnica chamissonis tinctures. Acta Sci. Pol-Hortoru. 2011; 10: 15-27.
5. Sugier D. Essential Oil from Arnica montana L. Achenes: Chemical Characteristics and Anticancer Activity. Molecules 2019; 24: 41-58. [DOI:10.3390/molecules24224158]
6. Sugier D and Gawlik-Dziki U. The influence of foliar fertilization on yielding and quality of mountain Arnica (Arnica montana L.) and chamisso Arnica (Arnica chamissonis var. foliosa). Ann Univ Mariae Curie Sklodowska. Sectio E, Agricultura 2009; 64: 129-139. [DOI:10.2478/v10081-009-0035-8]
7. Gaspar A, Craciunescu O, Trif M, Moisei M and Moldovan L. Antioxidant and anti-inflammatory properties of active compounds from Arnica Montana L. Rom. Biotechnol. Lett. 2014; 19: 9353-9365.
8. Cassell AC, Walsh C, Belin M, Cambornac M, Rohit JR and Lubrano C. Establishment of plantation from micropropagated Arnica chamissonsis a phar-maceutical substitute for the endangered A. montana. Plant Cell, Tissue Organ Cult. 1999; 156: 139-144. [DOI:10.1023/A:1006224215503]
9. Nichterlein K. Arnica montana (Mountain Arnica): in vitro culture and the production of sesquiterpene lactones and other secondary metabolites. In Medicinal and Aromatic Plants VIII. 1995; pp. 47-61. Springer, Berlin, Heidelberg. [DOI:10.1007/978-3-662-08612-4_4]
10. Nowack T. Lowland arnica-culivation in gostyńskoleszczyński region. Wydawnictwa Polski Komitet Zielarski 2002; 1: 18-19.
11. Albert A, Sareedenchai V, Heller W, Seidlitz HK and Zidorn C. Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia 2009; 160: 1-8. [DOI:10.1007/s00442-009-1277-1]
12. Cornu C, Joseph P, Gaillard S, Bauer C, Vedrinne C, Bissery A, Melot G, ossard N, Belon P and Lehot J. No effect of a homoeopathic combination of Arnica montana and Bryonia alba on bleeding, inflammation, and ischaemia after aortic valve surgery. Br. J. Clin. Pharmacol. 2010; 69: 136-142. [DOI:10.1111/j.1365-2125.2009.03574.x]
13. Pljevljakušić D, Janković T, Jelačić S, Novaković M, Menković N, Beatović D and Dajić-Stevanović Z. Morphological and chemical characterization of Arnica montana L. under different cultivation models. Ind. Crops. Prod. 2014; 52: 233-244. [DOI:10.1016/j.indcrop.2013.10.035]
14. Sugier D, Sugier P and Gawlik-Dziki U. Propagation and introduction of Arnica montana L. into cultivation: a step to reduce the pressure on endangered and high-valued medicinal plant species. Sci. World J. Article ID 414363, 2013; 1-11. [DOI:10.1155/2013/414363]
15. Pljevljakušić D, Rančić D, Ristić M, Vujisić L, Radanović D and Dajić-Stevanović Z. Rhizome and root yield of the cultivated Arnica montana L., chemical composition and histochemical localization of essential oil. Ind. Crops. Prod. 2012; 39: 177-189. [DOI:10.1016/j.indcrop.2012.02.030]
16. Sugier D, Kołodziej B and Bielińska E. The effect of leonardite application on Arnica montana L. yielding and chosen chemical properties and enzymatic activity of the soil. J. Geochem. Explor. 2013; 129: 76-81. [DOI:10.1016/j.gexplo.2012.10.013]
17. Kowalski R, Sugier D, Sugier P and Kołodziej B. Evaluation of the chemical composition of essential oils with respect to the maturity of flower heads of Arnica montana L. and Arnica chamissonis Less. cultivated for industry. Ind. Crops. Prod. 2015; 76: 857-865. [DOI:10.1016/j.indcrop.2015.07.029]
18. Kumar TS, Shanmugam S, Palvannan T and Kumar VM. Evaluation of antioxidant properties of Canthium parviflorum Lam. leaves. Nat. Prod. Rad. 2008; 7: 122-126.
19. Douglas JA, Smallfield BM, Burgess EJ, Perry NB, Anderson RE, Douglas MH and Anne Glennie V. Sesquiterpene lactones in Arnica montana: a rapid analytical method and the effects of flower maturity and simulated mechanical harvesting on quality and yield. Planta Med. 2004; 70: 166-170. [DOI:10.1055/s-2004-815495]
20. Yuan G, Hong L, Li X, Xu L, Tang W and Wang Z. Experimental investigation of a solar dryer system for drying carpet. Energy Procedia. 2015; 70: 626-633. [DOI:10.1016/j.egypro.2015.02.170]
21. Sathishkumar R, Lakshmi PTV and Annamalai A. Effect of drying treatment on the content of antioxidants in Enicostemma littorale Blume. Res. J. Medicinal Plant. 2009; 3: 93-101. [DOI:10.3923/rjmp.2009.93.101]
22. Capecka E, Mareczek A and Leja M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food chem. 2005; 93: 223-226. [DOI:10.1016/j.foodchem.2004.09.020]
23. Zhou K and Yu L. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. LWT-Food Sci. Technol. 2006; 39:1155-1162. [DOI:10.1016/j.lwt.2005.07.015]
24. Pallab K, Tapan BK, Tapas PK and Ramen K. Estimation of total flavonoids content (tfc) and antioxidant activities of methanol whole plant extract of Biophytum sensitivum Linn. J. Drug Deliv. Ther. 2013; 3: 33-37. [DOI:10.22270/jddt.v3i4.546]
25. Patel R, Patel A, Desai S and Nagee A. Study of secondary metabolites and antioxidant properties of leaves, stem and root among Hibiscus rosa-sinensis cultivars. Asian J. Exp. Biol. Sci. 2012; 3: 719-725.
26. Figueiredo AC, Barroso JG. Pedro LG and Scheffer JJ. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour. Frag. J. 2008; 23: 213-226. [DOI:10.1002/ffj.1875]
27. Omidbeigi R. Production and manufacturing the herbs. Beh-nashr Publication, Mashhad, 2005, 1: 347.
28. Figueiredo AC, Barroso JG, Pais MSS and Scheffer JJ. Composition of the essential oils from leaves and flowers of Achillea millefolium L. ssp. millefolium. Flavour. Frag. J. 1992; 7: 219-222. [DOI:10.1002/ffj.2730070409]
29. Langenheim JH. Higher plant terpenoids: a phytocentric overview of their ecological roles. J. Chem. Ecol. 1994; 20: 1223-1280. [DOI:10.1007/BF02059809]
30. Methakhup S, Chiewchan N and Devahastin S. Effects of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake. LWT-Food Sci. Technol. 2005; 38: 579-587. [DOI:10.1016/j.lwt.2004.08.012]
31. Sharma GP, Verma RC and Pathare PB. Thin-layer infrared radiation drying of onion slices. J. Food Eng. 2005; 67: 361-366. [DOI:10.1016/j.jfoodeng.2004.05.002]
32. Feng H. Analysis of microwave assisted fluidized-bed drying of particulate product with a simplified heat and mass transfer model. Int. Commun. Heat Mass Transf. 2002; 29: 1021-1028. [DOI:10.1016/S0735-1933(02)00430-X]
33. Walde SG, Velu V, Jyothirmayi T and Math RG. Effects of pretreatments and drying methods on dehydration of mushroom. J. Food Eng. 2006; 74: 108-115. [DOI:10.1016/j.jfoodeng.2005.02.008]
34. Azizi M, Rahmati MM, Ebadi TM and Hassanzadeh-Khayyat M. The effects of different drying methods on weight loss rate, essential oil and chamazulene contents of chamomile (Matricaria recutita) flowers. Iran. J. Med. Aromat. Plants 2009; 25: 182-192.
35. Funebo T, Ohlsson, T. Microwave-assisted air dehydration of apple and mushroom. J. Food Engineering 1998; 38: 353-367. [DOI:10.1016/S0260-8774(98)00131-9]
36. Soysal Y. Microwave drying characteristics of parsley. Biosyst. Eng. 2004; 89: 167-173. [DOI:10.1016/j.biosystemseng.2004.07.008]
37. Rahmati M, Azizi M and Hasanzadeh Khayat M. Study on the effects of different drying methods on weight loss rate, essential oil and chamazolene contents of chamomile (Matricaria recutita CV. Germania (Diploid)) flowers. J. Hort. Sci. 2010; 24: 129-137.
38. Parker JC. Developing aherb and spice industry in Callide Valley, Qeensland. A Report for the Rural Industries Research and Development Corporation (RIRDC), RIRDC 1999; Publication No: 99/45, RIRDC Project No: DAQ-194A.
39. Gulati A, Rawat R, Singh B, Ravindranath SD. Application of microwave energy in the manufacture of enhanced-quality green tea. J. Agric. Food Chem. 2003; 51: 4764-4768. [DOI:10.1021/jf026227q]
40. Zubair M, Nybom H, Lindholm C and Rumpunen K. Major polyphenols in aerial organs of greater plantain (Plantago major L.), and effects of drying temperature on polyphenol contents in the leaves. Sci. Hortic. 2011; 128: 523-529. [DOI:10.1016/j.scienta.2011.03.001]
41. Hossain MB, Barry-Ryan C, Martin-Diana AB and Brunton NP. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010; 123: 85-91. [DOI:10.1016/j.foodchem.2010.04.003]
42. Mohtashemi S, Babalar M, Mirjalili MH, Ebrahimzadeh Moosavi M and Adib J. Effects of different drying methods on drying rate, essential oil content and antioxidant activity of Dracocephalum moldavica L. 2010; In: Proceedings of National Young Researchers Congress of Biology, 13th-17th February, Tehran, Iran. (In Persian).
43. Heras-Ramírez ME, Quintero-Ramos A, Camacho-Dávila AA, Barnard J, Talamás-Abbud R, Torres-Muñoz JV and Salas-Muñoz E. Effect of blanching and drying temperature on polyphenolic compound stability and antioxidant capacity of apple pomace. Food Bioproc. Tech. 2012; 5: 2201-2210. [DOI:10.1007/s11947-011-0583-x]
44. Ayyobi H, Peyvast GA, and Olfati JA. Effect of drying methods on essential oil yield, total phenol content and antioxidant capacity of peppermint and dill. Ratarstvo i Povrtarstvo 2014; 51: 18-22. [DOI:10.5937/ratpov51-5077]
45. Arabhosseini A, Padhye S, van Beek TA, van Boxtel AJ, Huisman W, Posthumus MA, and Müller J. Loss of essential oil of tarragon (Artemisia dracunculus L.) due to drying. J. Sci. Food Agric. 2006; 86: 2543-2550. [DOI:10.1002/jsfa.2641]
46. Hamrouni-Sellami I, Rahali FZ, Rebey IB, Bourgou S, Limam F and Marzouk B. Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food Bioproc. Tech. 2013; 6: 806-817. [DOI:10.1007/s11947-012-0877-7]
47. Díaz-Maroto MC, Pérez-Coello MS, Gonzalez Vinas MA and Cabezudo MD. Influence of drying on the flavor quality of spearmint (Mentha spicata L.). J. Agric. Food Chem. 2003; 51: 1265-1269. [DOI:10.1021/jf020805l]
48. Yousif AN, Durance TD, Scaman CH and Girard B. Headspace volatiles and physical characteristics of vacuum‐microwave, air, and freeze‐dried oregano (Lippiaber landieri Schauer). J. Food Sci. 2000; 65: 926-930. [DOI:10.1111/j.1365-2621.2000.tb09394.x]
49. Lewicki PP, Pawlak G. Effect of drying on microstructure of plant tissue. Dry. Technol. 2003; 21: 657-683. [DOI:10.1081/DRT-120019057]
50. Yousif AN, Scaman CH, Durance TD, Girard B. Flavor volatiles and physical properties of vacuum-microwave-and air-dried sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 1999; 47: 4777-4781. [DOI:10.1021/jf990484m]
51. Lin TM, Durance TD and Scaman CH. Characterization of vacuum microwave, air and freeze dried carrot slices. Food Res. Int. 1998; 31: 111-117. [DOI:10.1016/S0963-9969(98)00070-2]
52. McLoughlin CM, McMinn WAM and Magee, TRA. Microwave-vacuum drying of pharmaceutical powders. Dry. Technol. 2003; 21: 1719-1733. [DOI:10.1081/DRT-120025505]
53. Szumny A, Figiel A, Gutiérrez-Ortíz A and Carbonell-Barrachina AA. Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. J. Food Eng. 2010; 97: 253-260. [DOI:10.1016/j.jfoodeng.2009.10.019]
54. Chan EWC, Lim YY, Wong SK, Lim KK, Tan SP, Lianto FS and Yong MY. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem. 2009; 113: 166-172. [DOI:10.1016/j.foodchem.2008.07.090]
55. Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H and Zidorn C. Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO: a 3-year comparison. J. Chem. Ecol. 2008; 34: 369-375. [DOI:10.1007/s10886-007-9407-x]
56. Lim YY and Murtijaya J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Sci. Technol. 2007; 40: 1664-1669. [DOI:10.1016/j.lwt.2006.12.013]
57. Kammoun Bejar A, Kechaou N, Boudhrioua and Mihoubi N. Effect of microwave treatment on physical and functional properties of orange (Citrus sinensis) peel and leaves. Int. J. Food Process. Technol. 2011; 2: 109-116. [DOI:10.4172/2157-7110.1000109]
58. Guo YR, An YM, Jia YX and Xu JG. Effect of Drying Methods on Chemical Composition and Biological Activity of Essential Oil from Cumin (Cuminum cyminum L.). J. Essent. Oil-Bear. Plants. 2018; 21: 1295-1302. [DOI:10.1080/0972060X.2018.1538818]
59. Argyropoulos D, Heindl A. and Müller J. Assessment of convection, hot‐air combined with microwave‐vacuum and freeze‐drying methods for mushrooms with regard to product quality. Int. J. Food Sci. Technol. 2011; 46: 333-342. [DOI:10.1111/j.1365-2621.2010.02500.x]
60. Shi XF, Chu JZ, Zhang YF, Liu CQ and Yao XQ. Nutritional and active ingredients of medicinal chrysanthemum flower heads affected by different drying methods. Ind. Crops. Prod. 2017; 104: 45-51. [DOI:10.1016/j.indcrop.2017.04.021]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb