year 18, Issue 72 (11-2019)                   J. Med. Plants 2019, 18(72): 228-240 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ineloffer M, Heidari M, Naghdi Badi H, Tolyat Abulhassani S, Makarian H, Ameryan M. Phytochemical and Morphological Responses of Atropa (Atropa belladonna L.) to PGPR under Greenhouse Conditions. J. Med. Plants 2019; 18 (72) :228-240
URL: http://jmp.ir/article-1-2717-en.html
1- PhD Student of Crop Physiology, Faculty of Agriculture, Shahroud University of Technology, Shahroud, Iran
2- Department of Agronomy, Shahrood University of Technology, Shahrood, Iran
3- Medicinal Plants Research Centre, Institute of Medicinal Plants, ACECR, Karaj, Iran , : naghdibadi@yahoo.com
4- Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
Abstract:   (4295 Views)
Background: Atropine and scopolamine are important alkaloids that are widely used in the pharmaceutical industry.
Objective: Determination of the effects of PGPR (Plant growth-promoting rhizobacteria) on phytochemical and morpho-physiological traits of Atropa belladonna L. under greenhouse conditions.
Method: This study was done as a factorial experiment based on a randomized complete block design with 3 replications. PGPR in four levels including control or no inoculation, Pseudomonas, Azotobacter, Pseudomonas + Azotobacter and Thiobacillus + Sulfur as the first factor, and also chemical fertilizer at three levels including no fertilizer, 50% recommended fertilizer and 100% recommended fertilizer as second factor were used.
Results: The PGPR and chemical fertilizer and their interactions had significant effect
(P ≤ 0.01) on phytochemical and morpho-physiological traits. The highest values of root volume, root diameter and root dry weight were obtained from treatment of Azotobacter with 50% recommended fertilizer. The highest atropine and scopolamine levels of leaf (19.58 and 7.77 mg/g, respectively) were observed in no bacteria inoculation with 50% chemical fertilizer. The highest root atropine content was 7.69 mg/g which related to treatment of Thiobacillus + sulfur with 100% recommended fertilizer. The highest content of root scopolamine (5.69 mg/g) was observed in treatment of no bacteria inoculation with 50% recommended fertilizer.
Conclusion: Generally, the results showed that PGPRs (plant growth-promoting rhizobacteria) improved the quantitative and qualitative performance of A. belladonna.
Full-Text [PDF 750 kb]   (1434 Downloads)    
Type of Study: Research | Subject: Agriculture & Ethnobotany
Received: 2019/01/12 | Accepted: 2019/02/23 | Published: 2019/10/28

References
1. Fallahi J, Koocheki A and Rezvani Moghaddam P. Effects of biofertilizers on quantitative and qualitative yield of chamomile (Matricaria recutita L.) as a medicinal plant. Iranian Journal of Field Crops. 2008; 7 (1): 127 - 35.
2. Baghalian K and Naghdi Badi H. Volatile oil crops; their biology, biochemistry, and production. Andarz Publications. 2000, pp: 162 - 34.
3. Carrubba A, La Torre R and Matranga A. Cultivation Trials of some Aromatic and Medicinal Plants in a Semi-arid Mediterranean Environment. Proceedings of an International Conference on MAP, Acta Horticulture (ISHS). 2002; 21: 23 - 31. [DOI:10.17660/ActaHortic.2002.576.30]
4. Rothe G and Drager B. Tropane alkaloids- metabolic response to carbohydrate signal in root cultures of Atropa belladonna. Plant Science 2002; 163: 979-985. [DOI:10.1016/S0168-9452(02)00247-9]
5. Genova. E, Komitska and G, Beeva Y. Study on the germination of atropa bella-donna l. Seeds. Institute of Botany, Acad. G. Bonchev Str., Bl. 23, 1113 Sofia, Bulgaria. 1997, pp: 61-66.
6. Ghahreman A. Flora's color of Iran. Research Institute of Forests and Rangeland Publications, volumes 1-20. 1979-2001.
7. Salehi Surmaghi MH, Medicinal Plants and Phytotherapy, vol. 2, Donyay Taghziah Press, Tehran, Iran, 2010, pp: 376.
8. Zargari, A. Medicinal plants. Vol 3. Tehran: Tehran University Publications. 1996, P: 930.
9. Oksman-Caldentey KM, Kivela O and Hiltunen R. Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Science 1991; 78: 129-136. [DOI:10.1016/0168-9452(91)90169-9]
10. Ghahreman A. Iran Chromophytes, Volume 3. Tehran University Publication center. 1994, P: 770.
11. Lynch J.M. Resilience of the Rhizosfer to anthropogenic disturbance. Biodegradation 2002; 13: 21-27. [DOI:10.1023/A:1016333714505]
12. Ebhin masto R., P.K Chhonkar., D Singh and A.K. Patra. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisoil. Soil Biology abd Biochem. 2006; 38: 1577-1582. [DOI:10.1016/j.soilbio.2005.11.012]
13. Cherr C.M., Scholberg J.M.S and Mcsorley R. Green manure approaches to crop production: a synthesis. J. Agron. 2006; 98: 302-319. [DOI:10.2134/agronj2005.0035]
14. Jagaeeswaran R., Murugappan V and Govindaswamy M. W. Effect of slow release NPK fertilizer sources on the nutrient use efficiency in turmeric (Curcuma longa L.). J.Agri. Sci. 2005; 1: 65-69.
15. Han H.S., Supanjani K. and Lee D. Effect of coinoculation with phosphate and pottasum solublizing bacteria on mineral uptake and growth of pepper and cucumber, J. Agron. 2004; 24: 169-176.
16. Rodriguez H, Fraga R, Gonzalez T and Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growthpromoting bacteria. Plant Soil 2006; 287: 15 - 21. [DOI:10.1007/s11104-006-9056-9]
17. Dakora FD, Matiru V, King M and Phillips DA. Plant growth promotion in legumes and cereals by lumichrome, a rhizoidal signal metabolite. In: Finan TM, Obrian MR, Layzell DB, Vessey K, Newton WE, eds. Nitrogen fixation: global perspectives. Wallingford, UK: CABI Publishing, 2002, pp: 321 - 2.
18. Gull M, Hafee FY, Saleem M and Malik K. Phosphorus uptake and growth promotion of chickpea by co- inoculation of mineral phosphate solubilising bacteria and mixed rhizobial culture. Australian J. Experimental Agriculture 2004; 44: 623 - 8. [DOI:10.1071/EA02218]
19. Leticia AF, Pablo Z, Gomez MA and Sagardoy MA. Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biology and Fertility of Soils 2007; 43. 805-809. [DOI:10.1007/s00374-007-0172-3]
20. Han HS, Supanjani and Lee KD. Effect of coin coculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ. 2006; 52 (3): 130 - 6. [DOI:10.17221/3356-PSE]
21. Wu S.C., Z H. Caob., Z.G Lib., K.C Cheunga and M.H Wong. Effects of biofertolizer containing N-fixer, P and Ksolubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 2005; 125: 155-166. [DOI:10.1016/j.geoderma.2004.07.003]
22. Mahfouz SA and Sharaf-Eldin MA. Effect of mineral vs. biofertilizer on growth, yield, and essential oil content of fennel (Foeniculum vulgare Mill.). International Agrophysics 2007; 21: 361-366. [DOI:10.1055/s-2007-987419]
23. Kumar TS, Swaminathan V and Kumar S. Influence of nitrogen, phosphorus and biofertilizers on growth, yield and essential oil constituents in ratoon crop of davana (Artemisia pallens Wall.). Electronic Journal of Environmental, Agricultural and Food Chem. 2009; 8: 86-95.
24. Youssef AA, Edri AE and maa AM. A comparative study between some plant growth regulators and certain growth hormones producing microorganisms on growth and essential oil composition of Salvia officinalis L. Plant Annals of Agricultural Science 2004; 49: 299-311.
25. Azzaz NA, Hassan EA and Hamad EH. The Chemical Constituent and Vegetative and Yielding Characteristics of Fennel Plants Treated with Organic and Bio-fertilizer Instead of Mineral Fertilizer. Australian Journal of Basic and Applied Sci. 2009; 3 (2): 579 - 87.
26. Koochaki A, Tabrizi L and Ghorbani R. Effect of biofertilizers on agronomic and quality criteria of Hyssop (Hyssopus officinalis L.). J. Iranian Field Crop. Res. 1387; 1 (6): 588 - 91.
27. Facchini P J and De Luca V. Phloem-specific expression of tyrosine/dopa decarboxylase genes and biosynthesis of isoquinoline alkaloids in opium poppy. Plant Cell. 1995; 7: 1811 - 21. [DOI:10.2307/3870189]
28. Frick S, Chitty J A, Kramell R, Schmidt J, Allen R S, LarkinP L and Kutchan T M. Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots. Transgenic Res. 2004; 13: 607 - 13. [DOI:10.1007/s11248-004-2892-6]
29. Russel R. Plant root systems (the function and interaction with the soil). Marcel. Dekter. USA. 1977, p: 298.
30. Casson SA and Lindsey K. Genes and ignalling in root development. New Phytologist 2003, pp: 11 - 38. [DOI:10.1046/j.1469-8137.2003.00705.x]
31. Schippers B, Bakker AW, Bakker PA and Vanpeer R. Benefical deleterious effects of HCNproduction Pseudomonas on rhizosphere interaction. Plant Soil. 1990; 129: 75 - 83. [DOI:10.1007/BF00011693]
32. Omidbaigi R. Approaches to Production and Processing of Medicinal Plants. 1st ed. Tarrahan Nashr Press. Iran. 1998, p: 35.
33. Banerjee M.R., Yesmin L. and Vessey J.K. Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides. Handbook of Microbial Biofertilizers, 2005, pp: 137-181.
34. Fallah A., Besharati H. and Khosravi H. Soil Microbiology. Ayizh puplications: Tehran, Iran. Second Edition, 2010, 136 p.
35. Besharati H. Effect of Sulphur and Thiobacillus Species on increase of absorption of Some Elements in Soil. M.Sc. Thesis of Soil Science in Agriculture Faculty, Tehran University, 1998, pp: 98-147.
36. Cifuentes F. R. and W. C. Lindemann. Organic matter stimulation of elemental sulfur oxidation in calcareous soil. Soil Science Society of America J. 1993; 57: 727-731. [DOI:10.2136/sssaj1993.03615995005700030017x]
37. Rosa M.C., J.J. Muchovej and J.V.H. Alwarez. Temporal relations of phosphorus fractions in an oxisol amended with rock phosphate and Thiobacillus thiooxidans, Soil Science Society of America J. 1989; 53:1096-1100. [DOI:10.2136/sssaj1989.03615995005300040019x]
38. Sakari A., M.R. Ardakani and K. Khavazi. Effect of Azospiillum lipoferum and Thiobacillus thioparus on Quantitative and Qualitative Characters of Rapeseed (Brassica napus L.) Under Water Deficit Conditions. Middle-East Journal of Scientific Res. 2012; 11 (6): 819-827.
39. Hashimoto T., Nakajima K., Ongena G. and Yamada. Two tropinone reductases with distinct Stereospecificities from Cultured Roots of Hyoscyamus niger, Plant Physiol. 1992; 100: 836-845. [DOI:10.1104/pp.100.2.836]
40. Ghorbanpour M, Hatami M and Khavazi K. Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk. J. Biol. 2013; 37: 350-360. [DOI:10.3906/biy-1209-12]
41. Ghorbanpour M, Majnoun Hoseini N, Rezazadeh Sh, Omidi M, Khavazi K and Hatami M. Variations of Root and Shoot Tropane Alkaloids Production of Hyoscyamus niger under Two Rhizobacteria Strains Inoculation and Water Deficit Stress. JMP. 2011; 4 (40): 160-170.
42. Toni, M. Kutchan. Alkaloid Biosynthesis -The Basis for Metabolic Engineering of Medicinal Plants The Plant Cell 1995; Vol. 7: 1059-1070. [DOI:10.1105/tpc.7.7.1059]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb