year 18, Issue 71 (9-2019)                   J. Med. Plants 2019, 18(71): 49-66 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ataei Azimi A, Delnavaz Hashemloian B. Terpenoid Compounds and Anti- Hemozoin and Anti- Ciliates Protozians Effects of Artemisia annua L. and Chenopodium botrys L.. J. Med. Plants 2019; 18 (71) :49-66
URL: http://jmp.ir/article-1-2665-en.html
1- Associate professor in Plant Biology, Department of Biology, Saveh Branch, Islamic Azad University, Saveh, Iran , baharana1393@gmail.com
2- Associate professor in Plant Biology, Department of Biology, Saveh Branch, Islamic Azad University, Saveh, Iran
Abstract:   (3216 Views)
Background: β-Hematin (Hemozoin) was synthised inside human erythrocyte by malaria parasite. The parasite avoids the toxic effects by polymerizing heme molecules into insoluble crystalline β-Hematin. C. botrys and A. annua used for the treatment of diseases like malaria, hepatitis, cancers, and inflammations.
Objective: Determine of antimalarial and anti-protozoa effects of A. anuuae and C. botrys.
Method: C. botrys and A. annua terpenoids were extracted by acetonitrile. The antimalarial activity of plant extracts was evaluated by in vitro β-Hematin formation. Some ciliates were tested by 0.01, 0.1 and 1 mgml-1 of C. botrys and A. annua extracts. Total terpenoid were measured by spectrophotometry method. The terpenoid extracts were determined by TLC and GC-MS.
Results: Terpenoids effects on Paramecium and other ciliates was movement inhibition and cell targeting and cilia isolating induction and cell disjointing. Anti-malarial study on β-Hematin formation showed that acetonirile and aquatic extracts of shoots and roots of two species are antimalaria. Inhibiting effects of acetonirile and aquatic extracts of A. annua shoots were much of double effects of shoots of acetonirile extracts of C. botrys and aquatic extracts of A. annua root. Total terpenoids of two plants were 0.317- 4.46 mgg-1dw. TLC and GC/MS analysis showed that the acetonirile extract of A. annua contains artemisinin and several kinds of terpenoids, but in extracts of C. botrys with highe terpenoids content didn’t find artemisinin.
Conclusion: The inhibiting effects of C. botrys on some ciliates and in vitro β-Hematin formation is from other terpenes in the extracts probably.
Full-Text [PDF 761 kb]   (2095 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2018/01/15 | Accepted: 2018/12/12 | Published: 2019/08/24

References
1. Bilia AR, Lazari D, Messori L, Taglioli V, Temperini C and Vincieri FF. Simple and rapid physico-chemical methods to examine action of antimalarial drugs with hemin: its application to Artemisia annua constituents. Life Sci. 2002; 70 (7): 769-78. [DOI:10.1016/S0024-3205(01)01447-3]
2. Rathore D, Jani D, Nagarkatti R and Kumar S. Heme detoxification and antimalarial drugs known Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U. Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanistic update. Life Sci. 2007; 80: 813-8. [DOI:10.1016/j.lfs.2006.11.008]
3. Diarra N, van't Klooster C, Togola A, Diallo D, Willcox M and de Jong J. Ethnobotanical study of plants used against malaria in Sélingué subdistrict Mali. J. Ethno. Pharma Col. 2015; 2 (166): 352-60 [DOI:10.1016/j.jep.2015.02.054]
4. World Health Organization (WHO), 2014: https://www.who.int/ghu/publication/who_health_statics/2014.
5. Weissbuch I and Leiserowitz L. Interplay between malaria, crystalline hemozoin formation, and antimalarial drug action and design. Chem. Rev. 2008; 108: 4899-914. [DOI:10.1021/cr078274t]
6. Pagola S, Stephens P, Bohle D, Kosar A and Madsen S. The structure of malaria pigment â-hematin. Nature. 2000; 404: 307- 10. [DOI:10.1038/35005132]
7. Tekwani B L, Walker LA. Targeting the hemozoin synthesis pathway for new antimalarial drug discovery: technologies for in vitro b-hematin formation assay. Combin. Chem. High Throughput Screening. 2005; 8: 63-79. [DOI:10.2174/1386207053328101]
8. Sullivan D. Hemozoin, a biocrystal synthesized during the degradation of hemoglobin. Biodeg. Poly. 2000; 9: 129- 37.
9. Machemer R, Khnisch S, Machemer H. A Ca paradox: Electric and behavioural responses of Paramecium following changes in external ion concentration. Eur. J. Protistol. 1989; 25: 45-59. [DOI:10.1016/S0932-4739(89)80077-X]
10. Eckstein-Ludwig U, Webb RJ. Artemisinins target the SERCA of plasmodium falciparum. Nature. 2003; 424: 957-61. [DOI:10.1038/nature01813]
11. Ehrlich BE, Jacobson AR, Hinrichsen R, Sayre LM and Forte MA. Paramecium calcium channels are blocked by a family of calmodulin antagonists. Proc. Natl. Acad. Sci. 1988; 85: 5718-22. [DOI:10.1073/pnas.85.15.5718]
12. Preston RR, Wallen-Friedman MA, Saimi Y and Kung C. Calmodulin defects cause the loss of Ca2+-dependent K+ currents in two pantophobiac mutants of Paramecium tetraurelia. J. Membrane Biol. 1990; 115: 51-60. [DOI:10.1007/BF01869105]
13. Hennessey TM and Kung C. An anticalmodulin drug, W-7, inhibitsthe voltage-dependent calcium current in Paramecium caudatum. J. Exp. Biol. 1984; 110: 169- 81.
14. Nagamune K, Beatty WL and Sibley LD. Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii. Eukaryote Cell. 2007; 6: 2147-56. [DOI:10.1128/EC.00262-07]
15. Arnou B, Montigny C and Morth JP. The Plasmodium falciparum Ca2+- ATPase PfATP6: insensitive to artemisinin, but a potential drug target. Biochem. Soc. Trans. 2011; 39: 823-31. [DOI:10.1042/BST0390823]
16. Yoon KD, Chin YW, Yang MH and Kim J. Separation of anti-ulcer flavonoids from Artemisia extracts by high-speed countercurrent chromatography. Food Chem. 2011; 129 (2): 679-83. [DOI:10.1016/j.foodchem.2011.05.005]
17. Ferchichi L, Merza J and Landreau A. Occurrence of isocoumarinic and phenolic derivatives in Artemisia campestris L. subsp. Campestris. Biochem. System. Ecol. 2006; 34 (11): 829-34. [DOI:10.1016/j.bse.2006.07.002]
18. Wallaart TE, Pras N, Beekman AC and Quax WJ. Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Planta Med. 2000; 66: 57-62. [DOI:10.1055/s-2000-11115]
19. Ferreira JF, Simon JE and Janick J. Artemisia annua: Botany, Horticulture and Pharmacology. Hort. Rev. 1997; 19: 319-71. [DOI:10.1002/9780470650622.ch6]
20. Gupta SK, Singh P, Bajpai P, Ram G, Singh D, Gupta MM, Jain DC, Khanuja SPS and Kumar S. Morphogenetic variation for artemisinin and volatile oil in Artemisia annua. Ind. Crops Prod. 2002; 16: 217-24. [DOI:10.1016/S0926-6690(02)00049-3]
21. Wilairatana P, Krudsood S, Treeprasertsuk S, Chalermrut K and Looareesuwan S. The future outlook of anti-malarial drugs and recent work on the treatment of malaria. Med. Res. 2002; 33: 416-21. [DOI:10.1016/S0188-4409(02)00371-5]
22. Nosten F, Vugt MV, Price R, Luxemburger C, Thway KL, Brockman A, McGready R, Kuile FT, Looareesuwan S and White NJ. Effect of artesunate -melfloquine combination on incidence of Plasmodium falciparum malaria and melfloquine resistance in western Thailand. Lancet. 2000; 356: 297-302. [DOI:10.1016/S0140-6736(00)02505-8]
23. De Ridder S, van der Kooy F and Verpoorte R. Artemisia annua as a self-reliant treatment for malaria in developing countries. J. Eth. Pharm. 2008; 120 (3): 302-14. [DOI:10.1016/j.jep.2008.09.017]
24. Elfawal MA,Towler MJ, Reich NG, Golenbock D, Weathers PJ and Rich SM. Dried whole plant Artemisia annua as an antimalarial therapy. PLoS. 2012; 7 (12): 746-52. [DOI:10.1371/journal.pone.0052746]
25. Zargari A. Medicinal plants. Tehran, Iran, 1993, vol. 4, pp: 218-9.
26. Yadav N, Vasudeva N, Singh S and Sharma SK. Medicinal properties of genus Chenopodium Linn. Nat. Prod. Radi. 2007; 6 (2): 131-2.
27. Gallego F, Swiatopolk-Mirski A and Vallejo E. Essential oil of Chenopodium botrys. Farmacognosia. 1965; 24: 69-87.
28. Dembitsky V, Shkrob I and Hanus LO. Ascaridole and related peroxides from the genus Chenopodium. Biomed. Pap. Med. Fac. 2008; 152 (2): 209-215. [DOI:10.5507/bp.2008.032]
29. Lyubenova ML, Ganeva YA, Chipilska LT, Hadjieva PD and Chanev CD. Biological active components of Chenopodium botrys L. J. Balkan Ecol. 2006; 9 (3): 289-95.
30. Rezaeemanesh M, Shirbazoo Sh and Pouryaghoub N. In vitro Giardicidal Effects of Aqueous and Alcoholic Extracts of C. Botrys L. on Giardia Lamblia Cysts. JTHU Med. Scien. 2013; 1 (1): 31-41.
31. Akkawi M, Aburemeleh Q, Jaber S, Qutob M and Lutgen P. The effect of Artemisia sieberi extracts on the Formation of β-Hematin. British J. Pharma Toxi. 2014; 5 (1): 49-53. [DOI:10.19026/bjpt.5.5417]
32. Ferreira JFS and Janick J. Floral morphology of Artemisia annua with special reference to trichomes. Int. J. Plant. Scie. 1995; 156: 807-13. [DOI:10.1086/297304]
33. Fitch CD, Cai GZ, Chen YF and Shoemaker JD. Involvement of lipids in ferriprotoporphyrin IX polymerization in malaria. Biochim. Biophys. Acta. 1999; 1454: 31-7. [DOI:10.1016/S0925-4439(99)00017-4]
34. Tripathi AK, Khan SI, Walker LA and Tekwani BL. Spectrophotometric determination of the novo hemozoin/β-hematin formation in an in vitro assay. Anal. Biochem. 2004; 325: 85-91. [DOI:10.1016/j.ab.2003.10.016]
35. Reid PC and John AWG. Resing Cysts in the Ciliate class Polyhymenphorea. J. Protozoa. 1983; 30 (4): 710-3. [DOI:10.1111/j.1550-7408.1983.tb05348.x]
36. Veado LD, Sant'ana BS and Resgalla Jr. Atlas Do Zooplâncton Dominante No Baixo Estuário Do Rio Itajaí-Açu, Santa Catarina, Brasil: Copepoda E Cladocera Braz. J. Aquat Sci. Technol. 2010; 10 (2): 79-93. [DOI:10.14210/bjast.v14n2.p79-93]
37. Salavatian SM, Aliyev A and Nezami Baluchie SA. Investigation on identification, density and distribution of zooplankton in Lar reservoir. World J. Fish and Marine Sci. 2012; 4 (2): 211-7.
38. Bharati A and Sabat SC. A spectrophotometric assay for quantification of artemisinin. Talanta. 2010; 15 (82) 3: 1033-7. [DOI:10.1016/j.talanta.2010.06.015]
39. Mothana RA, Al-Said MS, Al-Yahya MA, Al-Rehaily AJ and Khaled JM. GC and GC/MS Analysis of Essential Oil Composition of the Endemic Soqotraen Leucas virgata Balff. Its Antimicrobial and Antioxidant Activities. Int. J. Mol. Sci. 2013; 14 (11): 23129-39. [DOI:10.3390/ijms141123129]
40. Masada Y. Analysis of Essential Oils by Gas chromatography and mass Spectrometry. John Wiley and Sons. 1976, New York, pp: 125-70.
41. Adams RP. Identification of essential oils by ion trap mass spectroscopy. Academic Press. 1989, London, pp: 15-37. [DOI:10.1016/B978-0-12-044230-0.50005-8]
42. Tan RX, Zheng WF, Tang HQ. Biologically active substances from the Artemisia genus. Planta Med. 1998; 64: 295-302. [DOI:10.1055/s-2006-957438]
43. Klayman DL. Qinghaosu (artemisinin): an anti-malarialdrug from China. Sciense 1985; 228: 1049-55. [DOI:10.1126/science.3887571]
44. Lutgen P and Michels B. Bactericidal properties of Artemisia annua tea and dosimetry of artemisinin in water under UV light. Revue Tech. Luxemb. 2008; 2: 73-8.
45. Ahameethunisa AR and Hopper W. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria. Comp. Alter. Med. 2010; 10: 1-6. [DOI:10.1186/1472-6882-10-6]
46. Vijayalakshmi Satish Kumar M, Fahad J, Prabhath Kodancha G, Udupa AL and Rathnakar UP. A tiurolithiatic activity of aqueous extract of Moringa oleifera (Lam) pod irats. Pharmaco. online. 2010; 3: 716-21.
47. Yan L, Hao-bin H, Xu-dong Z, Ji-hua Z and Li-ping L. Composition and antimicrobial activity of essential oil from the aerial part of Artemisia annua. J. Med. Plants Res. 2011; 5 (16): 3629-33.
48. Han JH, Lee EJ, Lee JH, So KP, Lee YH and Bae GN. Monitoring multiwalled carbon nanotube exposure in a carbon nanotube research facility. Inhalation Tox. 2008; 20: 741-9. [DOI:10.1080/08958370801942238]
49. Macsimovic ZA, Dordevic S and Mraovic M. Antimicribial activity of Chenopodium botrys essential oil. Fitoterapia 2005; 76: 112-4. [DOI:10.1016/j.fitote.2004.10.005]
50. Roos DS. Themes and variations in apicomplexan parasite biology. Sciense 2005; 309: 72-5. [DOI:10.1126/science.1115252]
51. Florens L, Washburn M, Daleraine J, Anthony R and Grainger M. Proteomicview of the Plasmodium falciparum life cycle. Nature 2002; 419: 520-6. [DOI:10.1038/nature01107]
52. Oertel D, Schein SJ and Kung C. Separation of membrane currents using a Paramecium mutant. Nature. 1977; 268: 120-4. [DOI:10.1038/268120a0]
53. Saimi Y and Martinac B. Calcium-dependent potassium channel in Paramecium studied under patch clamp. J. Membrane Biol. 1989; 112: 79-89. [DOI:10.1007/BF01871166]
54. Kumar R, Musiyenko A and Barik S. Plasmodium falciparum calcineurin and its association with heat shock protein 90. Mol. Biochem. Parasitol. 2005; 141: 29- 37. [DOI:10.1016/j.molbiopara.2005.01.012]
55. Iranshahi M, Emami SA and Mahmoud-Soltani M. Detection of Sesquiterpene Lactones in Ten Artemisia species Population of Khorasan Provinces. Iranian J. Bas. Med. Sci. 2007; 10 (3): 183-8.
56. Schwabe T, Ferreira MJP, Alvarenga SAV and Emerenciano VP. Neural Networks for Secondary Metabolites Prediction in Artemisia Genus. Int. Elect. J. Mol. Design. 2005; 4: 9-16.
57. Van Agtmael MA, Eggelte TA and Van Boxtel CJ. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol. Sci. 1999; 20: 199-205. [DOI:10.1016/S0165-6147(99)01302-4]
58. Keng CL, Singaram N and Lim BP. Production of artemisinin from cell suspension culture of Artemisia annua L. AsPac. J. Mol. Biol. Biote. 2010; 18 (1): 139-41.
59. Garcia LC. A Review of Artemisia annua L.: Its Genetics, Biochemical Characteristics, and Anti-Malarial Efficacy. Int. J. Sci. Tech. 2015; 5 (2): 38-46.
60. Ferreira JFS, Luthria DL, Sasaki T and Heyerick A. Flavonoids from Artemisia annua L. as Antioxidants and Their Potential Synergism with Artemisinin against Malaria and Cancer. Mol. 2010; 15: 3135-70. [DOI:10.3390/molecules15053135]
61. Woerdenbag HJ, Lugt CB and Pras N. Artemisia annua L.: a source of novel anti-malarial drug. Pharmaceutisch Weekblat. 1990; 12: 169-81. [DOI:10.1007/BF01980041]
62. Verdian-rizi MR, Sadat-Ebrahimi E, Hadjiakhoondi A, Fazeli MR and Pirali Hamedani M. Chemical Composition and Antimicrobial Activity of Artemisia annua L. Essential Oil from Iran. JMP. 2008; 7 (4): 58-62.
63. Hashemi P, Abolghasemi MM, Fakhari AR, Ebrahimi SN, Ahmadi S, Hydrodistillation-solvent microextraction and GC-MS identification of volatile components of Artemisia aucheri. Chromat. 2007; 66 (3) 4: 283-6. [DOI:10.1365/s10337-007-0289-4]
64. Buchbauer G, Divovetz K, Wasicky M, Walter J and Nikiforov A. Head space volatiles of Chenopodium botrys (Chenopodiaceae). J. Essent. Oil Res. 1995; 73: 305-8. [DOI:10.1080/10412905.1995.9698523]
65. Andov L A, Karapandzova M, Cvetkovikj I, Stefkov G and Kulevanova S. Chemical composition of Chenopodium botrys L. essential oil. Macedonian Pharma. Bull. 2014; 60 (1): 45-51. [DOI:10.33320/maced.pharm.bull.2014.60.01.006]
66. Mokhtari-Karchegani N, Amjad L and Ranjbar M. Comparative analysis of chemical composition of three ecotypes of Chenopodium botrys L. in Iran. Adv. Environ. Bio. 2014; 8 (24): 43-7.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb