year 19, Issue 75 (9-2020)                   J. Med. Plants 2020, 19(75): 132-140 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

khodadoost E, Nakhaei M, Askari A, Nasirizade M. The effect of inhalation of peppermint essential oilon anxiety and acurracy of nursing students in emergency department of Birjand educational hospitals. J. Med. Plants 2020; 19 (75) :132-140
URL: http://jmp.ir/article-1-2625-en.html
1- Department of Emergency Nursing, School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
2- Assistant Professor of Nursing, Department of Emergency Nursing, School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
3- Nursing and Midwifery Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
4- Instructor of Nursing, Department of Nursing, School of Nursing and Midwifery, Birjand University of Medical Science, Birjand, Iran , m.nassirizadeh@yahoo.com
Abstract:   (3112 Views)
Background: Accuracy and lack of anxiety are two important factors in how nursing student’s work. Various methods, including aromatherapy, have been suggested to reduce anxiety and increase accuracy. Objective: The aim of this study was to investigate the effect of inhaling peppermint essential oilon anxiety and accuracy of nursing students in emergency department of Birjandeducational hospitals. Methods: This is a clinical trial study. One drop of peppermint essential oil (experimental group, n = 32) and one drop of sweet almond oil (placebo, n = 32) was poured on the gauze into the mask and inhaled for 20 minutes in 4 days. Both Bonardel Accuracy Questionnaire and Spielberger Anxiety Questionnaire were completed by both groups before and after the intervention. Data were analyzed using SPSS 22 software. The study used t-test, paired t-test, Kolmogorov-Smirnov test, and chi-square test. Results: The results of this study showed that both groups were similar in terms of demographic variables. Paired t-test showed no significant difference between the two groups before and after the intervention (P<0.05). Paired t-test results showed that the mean score of accuracy after the intervention was significantly higher in both groups (P<0.001). Conclusion: Peppermint essential oil compared to the placebo group was able to increase the accuracy of nursing students, which is consistent with the findings of other studies.
Full-Text [PDF 340 kb]   (1484 Downloads)    
Type of Study: Short Communication | Subject: Medicinal Plants
Received: 2019/08/14 | Accepted: 2019/11/18 | Published: 2020/09/6

References
1. Santamaria-Echart A, Fernandes I, Barreiro F, Retegi A, Arbelaiz A, Corcuera MA and Eceiza A. Development of waterborne polyurethane-ureas added with plant extracts: Study of different incorporation routes and their influence on particle size, thermal, mechanical and antibacterial properties. Prog. Org. Coat. 2018; 117: 76-90. [DOI:10.1016/j.porgcoat.2018.01.006]
2. Gómez-Estaca J, López AL, López-Caballero ME, Gómez-Guillén MC and Montero P. Biodegradable gelatine-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010; 27: 889-96. [DOI:10.1016/j.fm.2010.05.012]
3. Hajdari A, Giorgi A, Beretta G, Gelmini F, Buratti S, Benedetti S, Merkouri A, Mala X, Kabashi S, Pentimalli D, Pulaj B and Mustafa B. Phytochemical and sensorial characterization of Hyssopus officinalis subsp. aristatus (godr.) Nyman (Lamiaceae) by GC-MS, HPLC-UV-DAD, spectrophotometric assays and e-nose with aid of chemometric techniques. Eur. Food Res. Technol. 2018; 44: 1-15. [DOI:10.1007/s00217-018-3046-z]
4. Dehghanzadeh N, Ketabchi S and Alizadeh A. Essential Oil composition and antibacterial activity of Hyssop Officinalis L. grown in Iran. Asian J. Exp. Biol. Sci. 2012; 3(4): 767-71.
5. Fathiazad F, Mazandarani M and Hamedeyazdan S. Phytochemical analysis and antioxidant activity of Hyssopus officinalis L. from Iran. Adv Pharm Bull. 2011; 1(2): 63-7.
6. Glamoclija JM, Sokovic MD, Vukojevic JB, Milenkovic IM, Brkic DD and Griensven LJLD. Antifungal activity of essential oil of Hyssopus officinalis L. against mycopathogen Mycogone perniciosa (Mang). Zb. Matitse Srp. Prir. Nauke. 2005; 109: 123-28. [DOI:10.2298/ZMSPN0519123G]
7. Vlase L, Benedec D, Hanganu D, Damian G, Csillag I, Sevastre B and et al. Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014; 19(5): 5490-507. [DOI:10.3390/molecules19055490]
8. Nabavi SM, Nabavi SF, Ebrahimzadeh MA and Eslami B. In Vitro Antioxidant Activity of Pyrus Boissieriana, Diospyros Lotus, Eryngium Caucasicum and Froriepia Subpinnata. JRUMS. 2009; 8(2): 139-50.
9. Vukic MD, Vukovic NL, Djelic GT, Obradovic AM, Kacaniova M, Markovic S, Popović S and Dejan B. Phytochemical analysis, antioxidant, antibacterial and cytotoxic activity of different plant organs of Eryngium serbicum L. Ind. Crop. Prod. 2018; 115(3): 88-97. [DOI:10.1016/j.indcrop.2018.02.031]
10. Flamini G, Tebano M and Cion PL. Composition of the essential oils from leafy parts of the shoots, flowers and fruits of Eryngium amethystinum from Amiata Mount (Tuscany, Italy). Food Chem. 2007; 107(2): 671-4. [DOI:10.1016/j.foodchem.2007.08.064]
11. Salmanian S, Sadeghi MA, Jamson M and Tabatabaee AB. Identification and quantification of phenolic acids, radical scavenging activity and ferric reducing power of Eryngium caucasicum Trautv. ethanolic and methanolic extracts. JRIFST. 2013; 2(2): 193-204.
12. Hashemabadi D and Kaviani B. Seasonal and geographical variations in the essential oils of Eryngium caucasicum Trautv growing in Iran. AEJAES. 2010; 8(2): 212-5.
13. Luo Y, Zhang B, Cheng WH and Wang Q. Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating. Carbohydr. Polym. 2011; 82(3): 942-51. [DOI:10.1016/j.carbpol.2010.06.029]
14. Desai. KGH and Park HJ. Recent developments in microencapsulation of food ingredients. Drying Technol. 2005; 23: 1361-94. [DOI:10.1081/DRT-200063478]
15. Molan A, Flanagan J, Wei W and Moughan P. Selenium-containing green tea has higher antioxidant and prebiotic activities than regular green tea. Food Chem. 2009; 114: 829-35. [DOI:10.1016/j.foodchem.2008.10.028]
16. Xia S and Xu S. Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res. Int. 2005; 38(3): 289-96. [DOI:10.1016/j.foodres.2004.04.010]
17. Woranuch S and Yoksan R. Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydra Polym. 2012; 96(2): 578-85. [DOI:10.1016/j.carbpol.2012.08.117]
18. Moghimi R, Ghaderi L, Rafati H, Aliahmadi A and McClements DJ. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016; 194: 410-5. [DOI:10.1016/j.foodchem.2015.07.139]
19. Burits M and Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 2000; 14(5): 323-8. https://doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q [DOI:10.1002/1099-1573(200008)14:53.0.CO;2-Q]
20. NCCLS Performance standards for antimicrobial susceptibility testing. 3th International Supplement: 1999, M 100-S 109.
21. Gaonkar AG, Vasisht N, Khare AR and Sobel R. Microencapsulation in the Food Industry A Practical Implementation Guide. Academic Press is an Imprint of Elsevier. 2014, pp: 187-98.
22. Fan M, Xu S, Xia S and Zhang X. Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study. Eur. Food Res. Technol. 2008; 227: 167-74. [DOI:10.1007/s00217-007-0706-9]
23. Wisuitiprot W, Somsiri A, Ingkaninan K and Waranuch N. A novel technique for chitosan microparticle preparation using a water/silicone emulsion: Green tea model. Int. J. Cosmet. Sci. 2011; 33: 351-8. [DOI:10.1111/j.1468-2494.2010.00635.x]
24. Zou LQ, Liu W, Liu W, Liang R, Li T and Liu C. Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. J. Agric Food Chem. 2014; 62: 934-41. [DOI:10.1021/jf402886s]
25. Gulseren I and Corredig M. Storage stability and physical characteristics of tea-polyphenolbearing nanoliposomes prepared with milk fat globule membrane phospholipids. J. Agric. Food Chem. 2013; 61: 3242-51. [DOI:10.1021/jf3045439]
26. Heurtault B, Saulnier P, Pech B, Proust JE and Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003; 24: 4283-300. [DOI:10.1016/S0142-9612(03)00331-4]
27. Luximon-Ramma A, Bahorun T, Soobrattee MA and Aruoma OI. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. J. Agric. Food Chem. 2002; 50: 5042-7. [DOI:10.1021/jf0201172]
28. Akbrian A, Rahimmalek M, Sabzalian MR and Saeidi G. Assessment of Phytochemical, Morphological and Antioxidant Variation of Bilehar (Dorema aucheri) Populations Cultivated in Different Environmental Conditions. J. Med. Plants. 2017; 16(2): 120-35.
29. Spigno G, Donsì F, Amendola D, Sessa M, Ferrari G and De Faveri DM. Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. J. Food Eng. 2013; 114: 207-14. [DOI:10.1016/j.jfoodeng.2012.08.014]
30. González-Paredes A, Clarés-Naveros B, Ruiz- Martínez MA, Durbán-Fornieles, JJ, Ramos-Cormenzana A and Monteoliva-Sánchez M. Delivery systems for natural antioxidant compounds: Archaeosomes and archaeosomal hydrogels characterization and release study. Int. J. Pharm. 2011; 421(2): 321-31. [DOI:10.1016/j.ijpharm.2011.09.042]
31. Yang T, Koo M. Hypocholesterolemic effects of Chinese tea. Pharmacol. Res. 1997; 35: 505-12. [DOI:10.1006/phrs.1997.0176]
32. Amin M, Nikoopour and Fazeli MR. A survey of antibacterial effects of oliveria decumbens and Nepeta binaludensis essential oils on staphylococcus aureus and escherichia coli in doogh. J. Med. Plants. 2018; 18(1): 134-43.
33. Zakerin AR, Ahmadi E, Fasihi Ramandi M, Abdollahi S, Molazadeh AR and Jafari S. The Effects of Ecologic Condition on Antimicrobial Activity of Endemic Herbal Extracts in Fars Province. JFUMS. 2015; 5(1): 111-9.
34. Srivastava AW and Shym S. Citrus: Climate and soil. Edition 1st. Delhy, India: International Book Distributing Company. 2002, p: 151-65.
35. Hallaj-Nezhadi S and Hassan M. Nanoliposome-based antibacterial drug delivery. Drug Deliv. 2015; 22(5): 581-9. [DOI:10.3109/10717544.2013.863409]
36. Liolios C, Gortzi O, Lalas S, Tsaknis J and Chinou I. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 2009; 112: 77-83. [DOI:10.1016/j.foodchem.2008.05.060]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb