year 19, Issue 75 (9-2020)                   J. Med. Plants 2020, 19(75): 291-304 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadpour Bishak F, Ashrafi F, Moradi Bidhendi S, Mirzaie A, Noorbazargan H. The impact of Grammosciadium platycarpum Boiss. & Hausskn. extract on oqxA efflux pump gene expression in antibiotic resistant clinical isolates of Klebsiella pneumoniae using real time PCR. J. Med. Plants. 2020; 19 (75) :291-304
URL: http://jmp.ir/article-1-2591-en.html
1- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
2- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran , F.ashrafi@gmail.com
3- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
4- Department of Biotechnology, Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Abstract:   (364 Views)
Background: Klebsiella pneumoniae is one of the most important causes of nosocomial infections, especially wound infection after surgery. One of the mechanisms of antibiotic resistance in K. pneumoniae strains, especially ciprofloxacin, is the presence of efflux pump. Objective: The aim of this study was to evaluate the anti-efflux activity of Grammosciadium platycarpum Boiss. & Hausskn. extract on the expression of oqxA efflux pump in K. pneumoniae strains which were resistant to antibiotics. Methods: In this experimental study, clinical specimens were collected from hospitals in Tehran and the K. pneumoniae strains were isolated. Subsequently, ciprofloxacin-resistant strains containing the oqxA efflux gene were detected using PCR. Finally, the gene expression of oqxA efflux pump in the strains treated with G. platycarpum extract was investigated using Real Time PCR. Results: In this study, 50 K. pneumoniae strains were isolated from clinical specimens and the results of antibiotic susceptibility showed that 70% (35 strains) of isolates were resistant to ciprofloxacin and oqxA gene was observed in 43% (15 strains) of ciprofloxacin resistant K. pneumoniae strains. Moreover, Real Time PCR results showed that the expression of oqxA gene in the strains which are treated with extract, down-regulated significantly. Conclusion: The results of this study showed that the G. platycarpum extract can inhibits the expression of the oqxA efflux pump in K. pneumoniae strains, and with further studies, the G. platycarpum extract can be used as a candidate for the drug design.
Full-Text [PDF 739 kb]   (158 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2019/07/11 | Accepted: 2019/12/7 | Published: 2020/09/6

References
1. Vargas JM, Moreno Mochi MP, Nuñez JM, Cáceres M, Mochi S, Del Campo Moreno R and Jure MA. Virulence factors and clinical patterns of multiple-clone hypermucoviscous KPC-2 producing K. pneumoniae. Heliyon. 2019; 5(6): e01829. [DOI:10.1016/j.heliyon.2019.e01829]
2. Taminato M, Fram D, Pereira RRF, Sesso R, Belasco AGS, Pignatari AC and Barbosa DA. Infection related to Klebsiella pneumoniae producing carbapenemase in renal transplant patients. Rev. Bras. Enferm. 2019; 72(3): 760-6. [DOI:10.1590/0034-7167-2019-0009]
3. Ding X, Yu Y, Chen M, Wang C, Kang Y and Lou J. Causative agents and outcome of spontaneous bacterial peritonitis in cirrhotic patients: community-acquired versus nosocomial infections. BMC. Infect. Dis. 2019; 19(1): 463. [DOI:10.1186/s12879-019-4102-4]
4. Meng X, Yang J, Duan J, Liu S, Huang X, Wen X and Huang X. Assessing Molecular Epidemiology of Carbapenem-resistant Klebsiella pneumoniae (CR-KP) with MLST and MALDI-TOF in Central China. Sci. Rep. 2019; 9(1): 2271. [DOI:10.1038/s41598-018-38295-8]
5. Delarampour A, Ghalehnoo ZR, Khademi F, Delarampour M, Vaez H. Molecular detection of carbapenem-resistant genes in clinical isolates of Klebsiella pneumoniae. Ann. Ig. 2019; 31(4): 349-55.
6. Vock I and Tschudin-Sutter S. Persisting intrahospital transmission of multidrug-resistant Klebsiella pneumoniae and challenges for infection control. Infect. Control. Hosp. Epidemiol. 2019; 11: 1-6. [DOI:10.1017/ice.2019.153]
7. Lautenbach E, Metlay JP, Bilker WB, Edelstein PH and Fishman NO. Association between fluoroquinolone resistance and mortality in Escherichia coli and Klebsiella pneumoniae infections: The Role of Inadequate Empirical Antimicrobial Therapy. Clin. Infect. Dis. 2005; 41: 423-9. [DOI:10.1086/432940]
8. Paterson DL, Mulazimoglu L, Casellas JM, Ko WC, Goossens H, Von Gottberg A and et al. Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum beta-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clin. Infect. Dis. 2000; 30(3): 473-8. [DOI:10.1086/313719]
9. Gupta V and Datta P. Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Indian. J. Med. Res. 2019; 149(2): 97-106. [DOI:10.4103/ijmr.IJMR_755_18]
10. Shi X, Chen M, Yu Z, Bell JM, Wang H, Forrester I, Villarreal H, Jakana J, Du D, Luisi BF, Ludtke SJ and Wang Z. In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nat. Commun. 2019;10(1): 2635. [DOI:10.1038/s41467-019-10512-6]
11. Ogawa W, Onishi M, Ni R, Tsuchiya T and Kuroda T. Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene. 2012; 498(2): 177-82. [DOI:10.1016/j.gene.2012.02.008]
12. Szabo O, Kocsis B, Szabo N, Kristof K and Szabo D. Contribution of OqxAB Efflux Pump in Selection of Fluoroquinolone-Resistant Klebsiella pneumoniae. Can. J. Infect. Dis. Med. Microbiol. 2018; 28(3): 1-5 4271638. [DOI:10.1155/2018/4271638]
13. Zheng JX, Lin ZW, Sun X, Lin WH, Chen Z, Wu Y, Qi GB, Deng QW, Qu D and Yu ZJ. Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg. Microbes. Infect. 2018; 7(1): 139. [DOI:10.1038/s41426-018-0141-y]
14. Rodríguez-Martínez JM, Díaz de Alba P, Briales A, Machuca J, Lossa M, Fernández-Cuenca F, Rodríguez Baño J, Martínez-Martínez L and Pascual Á. Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-β-lactamase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2013; 68(1): 68-73. [DOI:10.1093/jac/dks377]
15. Yuan J, Xu X, Guo Q, Zhao X, Ye X, Guo Y and Wang M. Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. J. Antimicrob. Chemother. 2012; 67(7): 1655-9. [DOI:10.1093/jac/dks086]
16. Zhong X, Xu H, Chen D, Zhou H, Hu X and Cheng G. First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital. PLoS One. 2014; 9(12): e115185. [DOI:10.1371/journal.pone.0115185]
17. Agyepong N, Govinden U, Owusu-Ofori A, Amoako DG, Allam M, Janice J, Pedersen T, Sundsfjord A and Essack S. Genomic characterization of multidrug-resistant ESBL-producing Klebsiella pneumoniae isolated from a Ghanaian teaching hospital. Int. J. Infect. Dis. 2019; 85: 117-23. [DOI:10.1016/j.ijid.2019.05.025]
18. Vera-Leiva A, Carrasco-Anabalón S, Lima CA, Villagra N, Domínguez M, Bello-Toledo H and González-Rocha G. The efflux pump inhibitor phenylalanine-arginine β-naphthylamide (PAβN) increases resistance to carbapenems in Chilean clinical isolates of KPC-producing Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 2018; 12: 73-6. [DOI:10.1016/j.jgar.2017.12.003]
19. Abuzaid A, Hamouda A and Amyes SG. Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. J. Hosp. Infect. 2012; 81(2): 87-91. [DOI:10.1016/j.jhin.2012.03.003]
20. Tankeo SB, Lacmata ST, Noumedem JA, Dzoyem JP, Kuiate JR and Kuete V. Antibacterial and antibiotic-potentiation activities of some Cameroonian food plants against multi-drug resistant gram-negative bacteria. Chin. J. Integr. Med. 2014; 20(7): 546-54. [DOI:10.1007/s11655-014-1866-7]
21. Nickavar B and Kamalinejad Mohandesi M. Comparison of the components of the essential oils from leaves and fruits of Grammosciadium platycarpum. Chem. Nat. Com. 2006; 42, 6: 686-8. [DOI:10.1007/s10600-006-0252-x]
22. Rawat D, Nair D. Extended-spectrum β-lactamases in Gram Negative Bacteria. Journal of global infectious diseases. 2010 Sep;2(3):263. Cheng HR and Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts. Bio. Lett. 2006; 28(1): 55-9. [DOI:10.4103/0974-777X.68531]
23. Olajuyigbe O, Ashafa A. Chemical composition and antibacterial activity of essential oil of Cosmos bipinnatus Cav. Leaves from South Africa. Iran. J. Pharm. Res. 2014; Fall; 13(4): 1417-23.
24. Bagheri Farahani Z, Mirzaie A, Ashrafi F, Rahimpour Hesari M, Chitgar A, Noorbazargan H and Rahimi A. Phytochemical composition and biological activities of Artemisia quettensis Podlech ethanolic extract. Nat. Prod. Res. 2017; 31(21): 2554-8. [DOI:10.1080/14786419.2017.1318385]
25. Alemayehu T, Ali M, Mitiku E and Hailemariam M. The burden of antimicrobial resistance at tertiary care hospital, southern Ethiopia: a three years' retrospective study. BMC. Infect. Dis. 2019; 19(1): 585. [DOI:10.1186/s12879-019-4210-1]
26. Crémieux AC, Dinh A, Nordmann P, Mouton W, Tattevin P, Ghout I, Jayol A, Aimer O, Gatin L, Verdier MC, Saleh-Mghir A and Laurent F. Efficacy of colistin alone and in various combinations for the treatment of experimental osteomyelitis due to carbapenemase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2019; pii: dkz257. [DOI:10.1093/jac/dkz257]
27. Xu Q, Jiang J, Zhu Z, Xu T, Sheng ZK, Ye M, Xu X and Wang M. Efflux Pumps AcrAB and OqxAB Contribute to Nitrofurantoin Resistance in an Uropathogenic Klebsiella pneumoniae Isolate. Int. J. Antimicrob. Agents. 2019; pii: S0924-8579 (19): 30145-1.
28. Li J, Zhang H, Ning J, Sajid A, Cheng G, Yuan Z and Hao H. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob. Resist. Infect. Control. 2019; 8: 44. [DOI:10.1186/s13756-019-0489-3]
29. Dolatabadi A, Noorbazargan H, Khayam N, et al. Ecofriendly Biomolecule-Capped Bifidobacterium bifidum-Manufactured Silver Nanoparticles and Efflux Pump Genes Expression Alteration in Klebsiella pneumoniae [published online ahead of print, 2020 Jul 7]. Microb Drug Resist. 2020;10: 1-11. [DOI:10.1089/mdr.2019.0366]
30. Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, Satija S, Gupta G, Chellappan DK, Thangavelu L and Dua K. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J. Photochem. Photobiol. B. 2019; 197: 111531. [DOI:10.1016/j.jphotobiol.2019.111531]
31. Hashemi A, Fallah F, Taherpour A, Goudarzi H, Erfanimanesh S and Taki E. Evaluation of genetic pattern and determination of oqxA gene expression levels among clinical isolates of Klebsiella pneumoniae strains. J. Mazandaran. Univ. Med. Sci. 2014; 24(119): 48-61.
32. Shahbazi S, Zargar M and Soleimani dorjagh M. Determination of existence of oqxAB genes in Klebsiella pneumoniae isolated from urinary tract infections and their antibiotic resistance pattern in Qom. NCMBJ. 2017; 7(28): 105-13.
33. Bokaeian M and Saeidi S. Evolution of antimicrobial activity of leaf extract of Withania somnifera against antibiotic resistanct Staphylococcus aureus. Zahedan. J. Res. Med. Sci. 2015; 17(7):-. doi: 10.17795/zjrms1016. [DOI:10.17795/zjrms1016]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2020 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb