year 19, Issue 75 (9-2020)                   J. Med. Plants 2020, 19(75): 102-117 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadi M, Baghizadeh A. Optimization and characterization of biosynthesized gold nanoparticles by Oenothera biennis seed extract using taguchi method. J. Med. Plants. 2020; 19 (75) :102-117
1- Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
2- Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran ,
Abstract:   (432 Views)
Background: The process of producing nanomaterials involves the procurement of ingredients, the production of nanomaterials on commercial scale, and their use in many fields of medicine, health, agriculture, pharmacy, chemistry, and so on. Objective: Economical and green production of gold nanoparticles with sizes less than 20 nm by evening primrose seed extract under the influence of effective and optimized environmental factors is one of the main objectives of this study. Methods: Extract of evening primrose seeds were prepared by Ultrasonic-assisted extraction. HAuCl4 solution was prepared in 1 mM and after adding to the extract plant with a specific concentration ratio and pH adjustment, the samples were incubated for a specified period. From the prepared samples, 16 samples were selected and used according to the Taguchi orthogonal array and using Minitab18 software. Results: The results show that among the 16 proposed recommendations based on the Taguchi method, the concentration of 200: 400 μL of gold chloride to the plant extract, pH=10, temperature of 50 °C and 24 hours are the optimum levels of each factor. The optimal sample for spectral and microscopic analysis of the Fourier Infrared (FTIR) spectrometer, X-ray diffraction (XRD), Zeta potential (ZP) and transient electron microscopy (TEM) was investigated. The results of TEM shows that the size of synthesized nanoparticles by are between 2-10 nm. Conclusion: biosynthesis of GNPs by EP seed extract using Taguchi method is cost effective, less time-consuming and successful.
Full-Text [PDF 957 kb]   (144 Downloads)    
Type of Study: Research |
Received: 2018/12/30 | Accepted: 2019/11/12 | Published: 2020/09/6

1. European Commission, Nanotechnologies, Principles, Applications, Implictions and Hands-on Activities, 2013, p. 406.
2. Shah M, Fawcett D, Sharma S, Tripathy SK and Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 2015; 8(11): 7278-308. [DOI:10.3390/ma8115377]
3. Goodsell DS, John Wiley & Sons, Biomedicine in action, 2004, 337.
4. ISO/TC 229, ISO/TS 80004-2: 2015 Nanotechnologies - Vocabulary - Part 2: Nano-objects, 2015.
5. Yeh Y-C, Creran B and Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012; 4(6): 1871-80. [DOI:10.1039/C1NR11188D]
6. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC and Baxter SC. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging, Acc. Chem. Res. 2008; 41(12): 1721-30. [DOI:10.1021/ar800035u]
7. Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M and Xia Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 2006; 35(11): 1084-94. [DOI:10.1039/b517615h]
8. Khlebtsov N and Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011; 40(3): 1647-71. [DOI:10.1039/C0CS00018C]
9. Dhand C, Dwivedi N, Loh XJ, Jie Ying AN, Verma NK and Beuerman RW. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Advances. 2015; 105003-37. [DOI:10.1039/C5RA19388E]
10. Mohanpuria P, Rana NK and Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications, J. Nanoparticle Res. 2008; 10(3): 507-17. [DOI:10.1007/s11051-007-9275-x]
11. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV and Taliansky ME. "Green" nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae. 2014; 6(20): 35-44. [DOI:10.32607/20758251-2014-6-1-35-44]
12. Swami A, Selvakannan PR, Pasricha R and Sastry M. One-step synthesis of ordered two-dimensional assemblies of silver nanoparticles by the spontaneous reduction of silver ions by pentadecylphenol langmuir monolayers. J. Phys. Chem. B. 2004; 108(50): 19269-75. [DOI:10.1021/jp0465581]
13. Jha AK, Prasad K, Prasad K, Kulkarni AR, Plant system: Nature's nanofactory. Colloids Surf. B Biointerfaces 2009; 73(2): 219-23. [DOI:10.1016/j.colsurfb.2009.05.018]
14. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S and Misra A. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009; 348 (1-3): 212-6. [DOI:10.1016/j.colsurfa.2009.07.021]
15. Shankar SS, Rai A, Ahmad A and Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 2004; 275(2): 496-502. [DOI:10.1016/j.jcis.2004.03.003]
16. Protima R, Rauwel E. Emerging Trends in Nanoparticle Synthesis Using Plant Extracts for Biomedical Applications. Glob J Nano. 2017; 1(3): 555562. DOI: 10.19080/GJN.2017. 01.555562. [DOI:10.19080/GJN.2017.01.555562]
17. Singh M, Kumar M, Kalaivani R, Manikandan S and Kumaraguru AK. Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng. 2013; 36(4): 407-15. [DOI:10.1007/s00449-012-0797-y]
18. Akhtar MS, Panwar J and Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem. Eng. 2013; 1(6): 591-602. [DOI:10.1021/sc300118u]
19. Malik P, Shankar R, Malik V, Sharma N and Mukherjee TK. Green Chemistry Based Benign Routes for Nanoparticle Synthesis. J. Nanoparticles 2014; 1-14. [DOI:10.1155/2014/302429]
20. Dwivedi AD and Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010; 369 (1-3): 27-33. [DOI:10.1016/j.colsurfa.2010.07.020]
21. Mittal AK, Chisti Y and Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013; 346-56. [DOI:10.1016/j.biotechadv.2013.01.003]
22. Li X, Xu H, Chen Z-S and Chen G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomaterials 2011; 1-16. [DOI:10.1155/2011/270974]
23. Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review, Parasitol. Res. 2016; 115(1): 23-34. [DOI:10.1007/s00436-015-4800-9]
24. Aljabali A, Akkam Y, Al Zoubi M, Al-Batayneh K, Al-Trad B and Abo Alrob O. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity. Nanomaterials (Basel). 2018; 8(3): 174. [DOI:10.3390/nano8030174]
25. Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs, In: Ultrasonics Sonochemistry 2001; 8(3): 303-13. [DOI:10.1016/S1350-4177(01)00071-2]
26. Luque-Garcı́a J and Luque de Castro M. Ultrasound: a powerful tool for leaching. TrAC Trends in Analytical Chem. 2003; 22(1): 41-7. [DOI:10.1016/S0165-9936(03)00102-X]
27. Romdhane M, Gourdon C and Casamatta G. Local investigation of some ultrasonic devices by means of a thermal sensor. Ultrasonics 1995; 33(3): 221-7. [DOI:10.1016/0041-624X(94)00023-I]
28. Salisová M, Toma S and Mason TJ. Comparison of conventional and ultrasonically assisted extractions of pharmaceutically active compounds from Salvia officinalis. Ultrasonics Sonochem. 1997; 4(2): 131-4. [DOI:10.1016/S1350-4177(97)00032-1]
29. Zolfaghari B and Yegdaneh A. Recent advances in extraction methods of medicinal plant components. J. Herbal Drugs. 2010; 1(1): 50-4.
30. Granica S, Czerwińska ME, Piwowarski JP, Ziaja M and Kiss AK. Chemical Composition, Antioxidative and Anti-Inflammatory Activity of Extracts Prepared from Aerial Parts of Oenothera biennis L. and Oenothera paradoxa Hudziok Obtained after Seeds Cultivation. J. Agric. Food Chem. 2013; 61(4): 801-10. [DOI:10.1021/jf304002h]
31. Ratz-Lyko A, Arct J, Herman A, Pytkowska K and Majewski S. The effect of enzymatic hydrolysis on the biological properties of Oenothera biennis, Borago officinalis and Nigella sativa seedcake by-products from oil pressing. International J. Food Science and Technol. 2014; 49(7): 1689-98. [DOI:10.1111/ijfs.12475]
32. Wettasinghe M, Shahidi F and Amarowicz R. Identification and quantification of low molecular weight phenolic antioxidants in seeds of Evening primrose (Oenothera biennis L.), J. Agricultural and Food Chem. 2002; 50(5): 1267-71. [DOI:10.1021/jf010526i]
33. Yunusova SG, Yakupova LR, Ivanova AV, Safiullin RL, Galkin EG and Yunusov MS. Fatty acid composition of oenothera biennis seed oil during storage. Antioxidant activity. Chemistry of Natural Compounds 2010; 46(2): 278-82. [DOI:10.1007/s10600-010-9587-4]
34. Vines G. Herbal harvests with a future: towards sustainable sources for medicinal plants. Plantlife International; 2004.
35. Taguchi G. Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization. 1986. 191 pp.
36. Kumar RS, Sureshkumar K and Velraj R. Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method. Fuel. 2015; 140: 90-96. DOI: 10.1016/j.fuel.2014.09.103. [DOI:10.1016/j.fuel.2014.09.103]
37. Abootorabi Z, Poorgholami M, Hanafi-Bojd MY and Hoshyar R. Green Synthesis of Gold Nanoparticles Using Barberry and Saffron Extracts. Modern Care J. 2016; 13(4): e13000. [DOI:10.5812/modernc.13000]
38. Yulizar Y, Ariyanta HA and Abdurrachman L. Green synthesis of gold nanoparticles using aqueous garlic (Allium sativum L.) extract and its interaction study with melamine. Bulletin of Chemical Reaction Engineering & amp; Catalysis. 2017; 12(2): 212-8. [DOI:10.9767/bcrec.12.2.770.212-218]
39. Bindhani BK, Panigrahi AK, Green Synthesis of Gold Nanoparticles Using Neem (Azadirachta indica L.) Leaf Extract and Its Biomedical Applications. International J. Advanced Biotechnology and Res. 2014; 5(3): 457-64.
40. Elbagory AM, Cupido CN, Meyer M and Hussein A. Large Scale Screening of Southern African Plant Extracts for the Green Synthesis of Gold Nanoparticles using Microtitre-Plate Method. Molecules 2016; 21(11): 1498. [DOI:10.3390/molecules21111498]
41. Khalil MMH, Ismail EH and El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract, 1st Nano Updates, Arabian J. Chem. 2012; 5(4): 431-7. [DOI:10.1016/j.arabjc.2010.11.011]
42. Rao KJ and Paria S. Aegle marmelos leaf extract and plant surfactants mediated green synthesis of Au and Ag nanoparticles by optimizing process parameters using taguchi method. ACS Sustainable Chem. Eng. 2015; 3(3): 483-91. [DOI:10.1021/acssuschemeng.5b00022]
43. Sett A, Gadewar M, Sharma P, Deka M and Bora U. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016; 7(2): 025005. [DOI:10.1088/2043-6262/7/2/025005]
44. Shabestarian H, Homayouni-Tabrizi M, Soltani M, Namvar F, Azizi S and Mohamad R. Green Synthesis of Gold Nanoparticles Using Sumac Aqueous Extract and Their Antioxidant Activity. Materials Res. 2017; 20(1): 264-70. [DOI:10.1590/1980-5373-mr-2015-0694]
45. Yasmin A, Ramesh K and Rajeshkumar S. Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Convergence. 2014. 1(1): 12. [DOI:10.1186/s40580-014-0012-8]
46. Ghahremanzadeh R, Yazdi Samadi F, Yousefi M, Green Synthesis of gold nanoparticles using three medicinal plant extracts as efficient reducing agents. Iran. J. Chem. Chem. Eng. 2019; 38(1): 1-10.
47. Hong C-W. Using the Taguchi Method for Effective Market Segmentation. Expert System Appl. 2012; 39(5): 5451-9. [DOI:10.1016/j.eswa.2011.11.040]
48. Yao AWL and Chi SC. Analysis and design of a Taguchi-Grey based electricity demand predictor for energy management systems. Energy Convers. Manag. 2004; 45(7): 1205-17. [DOI:10.1016/j.enconman.2003.08.008]
49. Sivamai PTR. Green Synthesis of Gold Nanoparticles Characterization by using Plant Essential Oil Menthapiperita and their Antifungal Activity against Human Pathogenic Fungi. J. Nanomed. Nanotechnol. 2014; 05(05): 1-6. [DOI:10.4172/2157-7439.1000229]
50. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X and et all. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnol. 2007; 18(10): 105104-15. [DOI:10.1088/0957-4484/18/10/105104]
51. Armendariz V, Herrera I, peralta-videa JR, Jose-yacaman M, Troiani H, Santiago P. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J. Nanoparticle Res. 2004; 6(4): 377-82. [DOI:10.1007/s11051-004-0741-4]
52. Gericke M and Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy 2006; 83 (1-4): 132-40. [DOI:10.1016/j.hydromet.2006.03.019]
53. Joint committee on powder diffraction standards. Analytical Chem. 1970; 42(11): 81A-81A. [DOI:10.1021/ac60293a779]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2020 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb