year 19, Issue 74 (6-2020)                   J. Med. Plants 2020, 19(74): 39-62 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zadeh Mehrizi T, Pirali Hamedani M, Ebrahimi Shahmabadi H, Mirzaei M, Shafiee Ardestani M, Haji Molla Hoseini M, et al . Effective materials of medicinal plants for leishmania treatment in vivo environment. J. Med. Plants. 2020; 19 (74) :39-62
1- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
2- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
3- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
4- Iran Ministry of Health and Medical Education, Deputy Ministry for Education, Academic Staff Member
5- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
6- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
7- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
8- Researcher, Department of Nutrition, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
9- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
10- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran ,
Abstract:   (822 Views)
Background: Treatment of leishmaniasis is a challenge due to problems such as high price and dose of the drug, drug resistance and side effects. Objective: The study aims to introduce plants compounds, which their antileishmanial effects were approved in vivo conditions. Methods: This study as a review article was performed by searching the keywords of “medicinal plants with in vivo antileishmanial effects, nanocarrier, clinical trials, and mechanism of action” in the well-known databases to 2018. In this study, 14 medicinal plant compounds with antileishmanial effects were reviewed and mechanism of action and their in vivo therapeutic effect were evaluated. Results: It was found that while some of these compounds had low antileishmanial effects, their efficacy against leishmaniasis was significantly increased through loading into nanocarriers. Conclusion: This study indicated that active component of medicinal plants especially along with nano carriers can be of interest for the treatment of Leishmania.
Full-Text [PDF 730 kb]   (297 Downloads)    
Type of Study: Review | Subject: Medicinal Plants
Received: 2018/12/2 | Accepted: 2019/08/11 | Published: 2020/07/21

1. Naman CB, Gomes CM and Gupta G. Phytodrugs and Immunomodulators for the Therapy of Leishmaniasis. Natural Products and Drug Discovery. Elsevier, 2018, pp: 213-275. [DOI:10.1016/B978-0-08-102081-4.00009-5]
2. Eshetu E, Awekew A and Bassa T. The Public Health significance of Leishmaniasis: an overview. Journal of Natural Sciences Research 2016; 6 (5): 48-57.
3. Mukbel RM, Khasharmeh RH, Hijjawi NS, Khalifeh MS, Hatmal MM and McDowell MA. Human immune response to salivary proteins of wild-caught Phlebotomus papatasi. Parasitology Research 2016; 115 (9): 3345-3355. [DOI:10.1007/s00436-016-5094-2]
4. Castiglioni P, Hartley M-A, Rossi M, Prevel F, Desponds C, Utzschneider DT, Eren RO, Zangger H, Brunner L, Collin N, Zehn D, Kuhlmann FM, Beverley SM, Fasel N and Ronet C. Exacerbated leishmaniasis caused by a viral endosymbiont can be prevented by immunization with its viral capsid. PLoS Neglected Tropical Diseases 2017; 11 (1): e0005240. [DOI:10.1371/journal.pntd.0005240]
5. Dujardin J-C. Epidemiology of Leishmaniasis in the Time of Drug Resistance (the Miltefosine Era). Drug Resistance in Leishmania Parasites Springer, 2018, pp: 85-107. [DOI:10.1007/978-3-319-74186-4_4]
6. Akbari M, Oryan A and Hatam G. Application of nanotechnology in treatment of leishmaniasis: A Review. Acta Tropica 2017; 172: 86-90. [DOI:10.1016/j.actatropica.2017.04.029]
7. Gomes CM, Cesetti MV, de Paula NA, Vernal S, Gupta G, Sampaio RN and Roselino AM. Field validation of SYBR green-and TaqMan-based real-time PCR using biopsy and swab samples to diagnose American tegumentary leishmaniasis in an area where Leishmania (Viannia) braziliensis is endemic. Journal of Clinical Microbiol. 2017; 55 (2): 526-534. [DOI:10.1128/JCM.01954-16]
8. Salem MM and Werbovetz KA. Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomiasis. Current Medicinal Chem. 2006; 13 (21): 2571-2598. [DOI:10.2174/092986706778201611]
9. Fournet A and Muñoz V. Natural products as trypanocidal, antileishmanial and antimalarial drugs. Current Topics in medicinal chemistry 2002; 2(11): 1215-1237. [DOI:10.2174/1568026023393011]
10. Ghosh AK, Bhattacharyya FK and Ghosh DK. Leishmania donovani: Amastigote inhibition and mode of actior of berberine. Experimental parasitology 1985; 60(3): 404-413. [DOI:10.1016/0014-4894(85)90047-5]
11. Vennerstrom J, Lovelace J, Waits V, Hanson WL and Klayman DL. Berberine derivatives as antileishmanial drugs. Antimicrobial agents and chemotherapy 1990; 34(5): 918-921. [DOI:10.1128/AAC.34.5.918]
12. Corpas-Lopez V, Morillas-Marquez F, Navarro-Moll MCn, Merino-Espinosa G, Díaz-Sáez V and Martín-Sánchez J. (−)-α-Bisabolol, a promising oral compound for the treatment of visceral leishmaniasis. Journal of natural products 2015; 78(6): 1202-1207. [DOI:10.1021/np5008697]
13. Cardona W, Quiñones W, Robledo S, Ivan Darı'o Ve'lez, Juan Murga, Jorge Garcı'a-Fortanet, Miguel Carda, Diana Cardonaa and Fernando Echeverri. Antiparasite and antimycobacterial activity of passifloricin analogues. Tetrahedron 2006; 62(17): 4086-4092. [DOI:10.1016/j.tet.2006.02.017]
14. Waechter AI, Ferreira ME, Fournet A, Rojas de Arias A, Nakayama H, Torres S, Hocquemiller R and Cavé A. Experimental treatment of cutaneous leishmaniasis with argentilactone isolated from Annona haematantha. Planta medica 1997; 63(5): 433-435. [DOI:10.1055/s-2006-957728]
15. Naman CB, Gupta G, Varikuti S, Chai H, Doskotch RW, Satoskar AR and Kinghorn AD. Northalrugosidine is a bisbenzyltetrahydroisoquinoline alkaloid from Thalictrum alpinum with in vivo antileishmanial activity. Journal of Natural Products 2015; 78 (3): 552-556. [DOI:10.1021/np501028u]
16. Fournet A, Inchausti A, Yaluff G, Rojas De Arias A, Guinaudeau H, Bruneton J, Breidenbach MA, Karplus PA and Faerman CH. Trypanocidal bisbenzylisoquinoline alkaloids are inhibitors of trypanothione reductase. Journal of Enzyme Inhibition 1998; 13 (1): 1-9. [DOI:10.3109/14756369809035823]
17. Araujo CA, Alegrio LV, Gomes DC, Lima ME, Gomes-Cardoso L and Leon LL. Studies on the effectiveness of diarylheptanoids derivatives against Leishmania amazonensis. Memórias do Instituto Oswaldo Cruz 1999; 94 (6): 791-794. [DOI:10.1590/S0074-02761999000600015]
18. Das R, Roy A, Dutta N and Majumder HK. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmaniadonovani. Apoptosis 2008; 13 (7): 867-882. [DOI:10.1007/s10495-008-0224-7]
19. Granados-Falla D, Gomez-Galindo A, Daza A, Robledo S, Coy-Barrera C, Cuca L and Delgado G. Seco-limonoid derived from Raputia heptaphylla promotes the control of cutaneous leishmaniasis in hamsters (Mesocricetus auratus). Parasitology 2016; 143 (3): 289-299. [DOI:10.1017/S0031182015001717]
20. Granados-Falla D, Coy-Barrera C, Cuca L, Robledo S, Coy-Barrera C, Cuca L and Delgado G. Seco-limonoid 11α, 19β-dihydroxy-7-acetoxy-7-deoxoichangin promotes the resolution of Leishmania panamensis infection. Advances in Bioscience and Biotechnol. 2013; 4 (2): 304. [DOI:10.4236/abb.2013.42A041]
21. Chen M, Christensen SB, Blom J, Lemmich E, Nadelmann L, Fich K, Theander TG and Kharazmi A. Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania. Antimicrobial Agents and Chemotherapy 1993; 37 (12): 2550-2556. [DOI:10.1128/AAC.37.12.2550]
22. Zhai L, Blom J, Chen M, Christensen SB and Kharazmi A. The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. Antimicrobial Agents and Chemotherapy 1995; 39 (12): 2742-2748. [DOI:10.1128/AAC.39.12.2742]
23. Chen M, Christensen S, Theander TG and Kharazmi A. Antileishmanial activity of licochalcone in mice infected with Leishmania major and in hamsters infected with Leishmania donovani. Antimicrobial Agents and Chemotherapy 1994; 38 (6): 1339-1344. [DOI:10.1128/AAC.38.6.1339]
24. Inacio JD, Canto-Cavalheiro MM and Almeida-Amaral EE. In vitro and in vivo effects of (−)-epigallocatechin 3-O-gallate on Leishmania amazonensis. J. Natural Products 2013; 76 (10): 1993-1996. [DOI:10.1021/np400624d]
25. Inacio JD, Gervazoni L, Canto-Cavalheiro MM and Almeida-Amaral EE. The effect of (-)-epigallocatechin 3-O-gallate in vitro and in vivo in Leishmania braziliensis: involvement of reactive oxygen species as a mechanism of action. PLoS Neglected Tropical Diseases 2014; 8 (8): e3093. [DOI:10.1371/journal.pntd.0003093]
26. Chowdhury S, Mukherjee T, Sengupta S, Chowdhury SR, Mukhopadhyay S and Majumder HK. Novel betulin derivatives as antileishmanial agents with mode of action targeting type IB DNA topoisomerase. Molecular Pharmacol. 2011; 80 (4): 694-703. [DOI:10.1124/mol.111.072785]
27. Meira CS, Barbosa-Filho JM, Lanfredi-Rangel A, Guimarães ET and Moreira DRM. Antiparasitic evaluation of betulinic acid derivatives reveals effective and selective anti-Trypanosoma cruzi inhibitors. Experimental Parasitology 2016; 166: 108-115. [DOI:10.1016/j.exppara.2016.04.007]
28. Nazari J, Payamnoor V and Kavosi MR. The evaluation of the absorption of some secondary metabolites (betulin, betulinic acid, phenol, flavonoids) and antioxidant activity of wood-inhabiting fungi on Betula pendula (L) Roth. in Golestan province. Eco-phytochemical Journal of Medicinal Plants 2016; 4 (2): 44-55.
29. Baglin I, Mitaine-Offer A-C, Nour M, Tan K, Cave C and Lacaille-Dubois M-A. A review of natural and modified betulinic, ursolic and echinocystic acid derivatives as potential antitumor and anti-HIV agents. Mini Reviews in Medicinal Chemistry 2003; 3 (6): 525-539. [DOI:10.2174/1389557033487917]
30. Alakurtti S, Mäkelä T, Koskimies S and Yli-Kauhaluoma J. Pharmacological properties of the ubiquitous natural product betulin. European Journal of Pharmaceutical Sciences 2014; 29 (1): 1-13. [DOI:10.1016/j.ejps.2006.04.006]
31. Ryu SY, Oak M-H, Yoon S-K, Cho DI, Yoo GS, Kim TS and Kim KM. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris. Planta Medica 2016; 66 (4): 358-360. [DOI:10.1055/s-2000-8531]
32. Mehrizi TZ, Ardestani MS, Hoseini MHM, Khamesipour A, Mosaffa N and Ramezani A. Novel Nanosized Chitosan-Betulinic Acid Against Resistant Leishmania Major and First Clinical Observation of such parasite in Kidney. Scientific Reports 2018; 8 (1): 11759. [DOI:10.1038/s41598-018-30103-7]
33. Sporn MB, Liby KT, Yore MM, Fu L, Lopchuk JM and Gribble GW. New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress. Journal of Natural Products 2011; 74 (3): 537-545. [DOI:10.1021/np100826q]
34. Chowdhury AR, Mandal S, Goswami A, Ghosh M, Mandal L, Chakraborty D, Ganguly A, Tripathi G, Mukhopadhyay S, Bandyopadhyay S and Majumder HK. Dihydrobetulinic acid induces apoptosis in Leishmania donovani by targeting DNA topoisomerase I and II: implications in antileishmanial therapy. Molecular Medicine 2003; 9 (1-2): 26-36. [DOI:10.1007/BF03402104]
35. Haavikko R. Synthesis of betulin derivatives with new bioactivities. 2015, 45-49. Doctoral dissertation (article-based).
36. Koohi Moftakhari Esfahani M, Alavi SE, Shahbazian S and Ebrahimi Shahmabadi H. Drug Delivery of Cisplatin to Breast Cancer by Polybutylcyanoacrylate Nanoparticles. Advances in Polymer Technol. 2018; 37 (3): 674-678. [DOI:10.1002/adv.21709]
37. Bagherpour Doun SK, Alavi SE, Koohi Moftakhari Esfahani M, Ebrahimi Shahmabadi H, Alavi F and Hamzei S. Efficacy of Cisplatin-loaded poly butyl cyanoacrylate nanoparticles on the ovarian cancer: an in vitro study. Tumor Biology 2014; 35 (8): 7491-7497. [DOI:10.1007/s13277-014-1996-8]
38. Ebrahimi Shahmabadi H, Movahedi F, Koohi Moftakhari Esfahani M, Alavi SE, Eslamifar A, Mohammadi Anaraki G and Akbarzadeh A. Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma. Tumor Biology 2014; 35 (5): 4799-4806. [DOI:10.1007/s13277-014-1630-9]
39. Zadeh Mehrizi T, Mosaffa N, Haji MollaHoseini M, Shafiee Ardestani M, Khamesipour A and Ramezani A. In Vivo Therapeutic Effects of Four Synthesized Antileishmanial Nanodrugs in the Treatment of Leishmaniasis. Archives of Clinical Infectious Diseases 2018; 13 (5): e80314. [DOI:10.5812/archcid.80314]
40. Zadeh Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, Khamesipour A, Mosaffa N and Ramezani A. Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine (Lond) 2018; 13 (24): 3129-3147. [DOI:10.2217/nnm-2018-0063]
41. Zadeh Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, Khamesipour A, Mosaffa N and Ramezani A. Novel Nanosized Chitosan-Betulinic Acid Against Resistant Leishmania Major and First Clinical Observation of such parasite in Kidney. Scientific Reports 2018; 8 (1): 11759. [DOI:10.1038/s41598-018-30103-7]
42. Zadeh Mehrizi T, Shafiee Ardestani M, Khamesipour A, Haji Molla Hoseini M, Mosaffa N, Anissian A and Ramezani A. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. Journal of Materials Science: Materials in Medicine 2018; 29 (8): 125. [DOI:10.1007/s10856-018-6122-9]
43. Zadeh Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, Khamesipour A, Mosaffa N, Ebrahimi Shahmabadi H and Ramezani A. A novel nanoformulation of antileishmanial drug of Betulinic acid loaded anionic linear globular dendrimer to increase the solubility and improvement the therapeutic effects of L. major. Pakistan Journal of Pharmaceutical Sceinces 2018; 14: 7593-7607. [DOI:10.2147/IJN.S220410]
44. Want MY, Islamuddin M, Chouhan G, Ozbak HA, Hemeg HA, Dasgupta AK, Chattopadhyay AP and Afrin F. Therapeutic efficacy of artemisinin-loaded nanoparticles in experimental visceral leishmaniasis. Colloids and Surfaces B: Biointerfaces 2015; 130: 215-221. [DOI:10.1016/j.colsurfb.2015.04.013]
45. Sen R, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P and Chatterjee M. Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. Journal of Medical Microbiol 2007; 56 (9): 1213-1218. [DOI:10.1099/jmm.0.47364-0]
46. Gorter K. Sur le principe amer de l'Andrographis paniculata N. Recueil des Travaux Chimiques des Pays‐Bas et de la Belgique 1911; 30 (4): 151-160. [DOI:10.1002/recl.19110300404]
47. Sinha J, Mukhopadhyay S, Das N and Basu MK. Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo. Drug Delivery 2000; 7 (4): 209-213. [DOI:10.1080/107175400455137]
48. Pan L, Lezama-Davila CM, Isaac-Marquez AP, Calomeni EP, Fuchs JR, Satoskar AR, and Kinghorn AD. Sterols with antileishmanial activity isolated from the roots of Pentalinon andrieuxii. Phytochemistry 2012; 82: 128-135. [DOI:10.1016/j.phytochem.2012.06.012]
49. Gupta G, Peine KJ, Abdelhamid D, Snider H, Shelton AB, Rao L, Kotha SR, Huntsman AC, Varikuti S, Oghumu S, Naman CB, Pan L, Parinandi NL, Papenfuss TL, Kinghorn AD, Bachelder EM, Ainslie KM, Fuchs JR, Satoskar AR. A Novel Sterol Isolated from a Plant Used by Mayan Traditional Healers Is Effective in Treatment of Visceral Leishmaniasis Caused by Leishmania donovani. ACS Infectious Diseases 2015; 1 (10): 497-506. [DOI:10.1021/acsinfecdis.5b00081]
50. Satoskar AR, Fuchs JR, Kinghorn AD, Pan L, Lezama-Davila CM and Bachelder E. Antileishmanial compositions and methods of use. Google Patents, 2014; US20170305959A1
51. Korte F. Amarogentin, ein neuer Bitterstoff aus Gentianaceen. Charakteristische Pflanzeninhaltsstoffe, IX. Mitteil. Chemische Berichte 1955; 88 (5): 704-707. [DOI:10.1002/cber.19550880518]
52. Medda S, Mukhopadhyay S and Basu MK. Evaluation of the in-vivo activity and toxicity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. Journal of Antimicrobial Chemotherapy 1999; 44 (6): 791-794. [DOI:10.1093/jac/44.6.791]
53. Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE. Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PloS One 2011; 6 (2): e14666. [DOI:10.1371/journal.pone.0014666]
54. Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F and Rüedi P. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrobial Agents and Chemotherapy 2006; 50 (4): 1352-1364. [DOI:10.1128/AAC.50.4.1352-1364.2006]
55. Sarkar S, Mandal S, Sinha J, Mukhopadhyay S, Das N and Basu M. Quercetin: critical evaluation as an antileishmanial agent in vivo in hamsters using different vesicular delivery modes. Journal of Drug Targeting 2002; 10 (8): 573-578. [DOI:10.1080/106118021000072681]
56. Moreno E, Schwartz J, Larrea E, Conde I, Font M, Sanmartín C, Irache JM, Espuelas S. Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. Nanomedicine: Nanotechnology, Biology and Medicine 2015; 11 (8): 1993-2002. [DOI:10.1016/j.nano.2015.07.011]
57. Almeida ERd. Preclinical and clinical studies of lapachol and beta-lapachone. The Open Natural Products Journal 2009; 2 (1): 42-47. [DOI:10.2174/1874848100902010042]
58. Torres-Santos EC, Rodrigues JM, Moreira DL, Kaplan MAC and Rossi-Bergmann B. Improvement of in vitro and in vivo antileishmanial activities of 2′, 6′-dihydroxy-4′-methoxychalcone by entrapment in poly (D, L-lactide) nanoparticles. Antimicrobial Agents and Chemotherapy 1999; 43 (7): 1776-1778. [DOI:10.1128/AAC.43.7.1776]
59. Torres-Santos EC, Sampaio-Santos MI, Buckner FS, Yokoyama K, Gelb M, Urbina JA and Rossi-Bergmann B. Altered sterol profile induced in Leishmania amazonensis by a natural dihydroxymethoxylated chalcone. Journal of Antimicrobial Chemotherapy 2009; 63 (3): 469-472. [DOI:10.1093/jac/dkn546]
60. Ghosh S, Kar N and Bera T. Oleanolic acid loaded poly lactic co-glycolic acid-vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leishmaniasis. International Journal of Biological Macromolecules 2016; 93: 961-970. [DOI:10.1016/j.ijbiomac.2016.09.014]
61. Kar P, Goyal AK, Das AP and Sen A. Antioxidant and pharmaceutical potential of Clerodendrum L.: An overview. International Journal of Green Pharmacy (IJGP) 2014; 8 (4): 210-216. [DOI:10.4103/0973-8258.142671]
62. Jesus JA, Lago JHG, Laurenti MD, Yamamoto ES and Passero LFD. Antimicrobial activity of oleanolic and ursolic acids: an update. Evidence-Based Complementary and Alternative Medicine 2015; 2015: 1-14. [DOI:10.1155/2015/620472]
63. Lala S, Nandy A, Mahato S and Basu M. Delivery in vivo of 14-deoxy-11-oxoandrographolide, an antileishmanial agent, by different drug carriers. Indian J Biochem Biophys 2003; 40 (3): 169-74.
64. Duke J. Handbook of Medicinal herbs/James A. Duke, with Bogenschutz-Godwin M, duCellier J, Duke PK. CRC press LLC, Boca Raton, Florida USA., 2002, pp: 654-796. [DOI:10.1201/9781420040463]
65. Kamatou G, Viljoen A, Gono-Bwalya A, van Zyl RL, van Vuuren SF, Lourens AC, Başer KH, Demirci B, Lindsey KL, van Staden J, Steenkamp P. The in vitro pharmacological activities and a chemical investigation of three South African Salvia species. Journal of Ethnopharmacology 2005; 102 (3): 382-390. [DOI:10.1016/j.jep.2005.06.034]
66. Braga PC, Dal Sasso M, Fonti E, Culici M. Antioxidant activity of bisabolol: inhibitory effects on chemiluminescence of human neutrophil bursts and cell-free systems. Pharmacology 2009; 83 (2): 110-115. [DOI:10.1159/000186049]
67. Baylac S and Racine P. Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. International Journal of Aromatherapy 2003; 13 (2-3): 138-142. [DOI:10.1016/S0962-4562(03)00083-3]
68. Niranjan A, Tewari SK and Lehri A. Biological activities of kalmegh (Andrographis paniculata Nees) and its active principles. Indian Journal of Natural products and Resources 2010; 1 (2): 125-135.
69. Amin A, Subbaiah T and Abbasi K. Berberine sulfate: antimicrobial activity, bioassay, and mode of action. Canadian Journal of Microbiol. 1969; 15 (9): 1067-1076. [DOI:10.1139/m69-190]
70. Wolffram S, Block M and Ader P. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. The Journal of Nutrition 2002; 132 (4): 630-635. [DOI:10.1093/jn/132.4.630]
71. Yamamoto N, Moon J-H, Tsushida T, Nagao A, Terao J. Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein. Archives of Biochemistry and Biophysics 1999; 372 (2): 347-354. [DOI:10.1006/abbi.1999.1516]
72. Reddy ACP and Lokesh BR. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Molecular and Cellular Biochemistry 1994; 137 (1): 1-8. [DOI:10.1007/BF00926033]
73. Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC and Maheshwari RK. Enhancement of wound healing by curcumin in animals. Wound Repair and Regeneration 1998; 6 (2): 167-177. [DOI:10.1046/j.1524-475X.1998.60211.x]
74. Thaloor D, Singh AK, Sidhu GS, Prasad PV, Kleinman HK and Maheshwari RK. Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin. Cell Growth and Differentiation-Publication American Association for Cancer Research 1998; 9 (4): 305-312.
75. Singh SV, Hu X, Srivastava SK, Singh M, Xia H, Orchard JL and Zaren HA. Mechanism of inhibition of benzo [a] pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis 1998; 19(8): 1357-1360. [DOI:10.1093/carcin/19.8.1357]
76. Fakhraee F, Badiee A, Alavizadeh SH, Jalali SA, Chavoshian O, Khamesipour A, Mahboudi F and Jaafari MR. Coadminstration of L. major amastigote class I nuclease (rLmaCIN) with LPD nanoparticles delays the progression of skin lesion and the L. major dissemination to the spleen in BALB/c mice-based experimental setting. Acta Tropica 2016; 159: 211-218. [DOI:10.1016/j.actatropica.2016.04.004]
77. Ray S, Majumder HK, Chakravarty AK, Mukhopadhyay S, Gil RR and Cordell GA. Amarogentin, a naturally occurring secoiridoid glycoside and a newly recognized inhibitor of topoisomerase I from Leishmania donovani. Journal of Natural Products 1996; 59 (1): 27-29. [DOI:10.1021/np960018g]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb