year 19, Issue 75 (9-2020)                   J. Med. Plants 2020, 19(75): 78-91 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alimahdi F, Shahrokhi N, Khaksari Hadad M, Asadikaram G, Abolhasani M. Effect of shilajit on the levels of pro-inflammatory and anti inflammatory cytokines in ulcerative colitis induced by acetic acid in male rats. J. Med. Plants. 2020; 19 (75) :78-91
URL: http://jmp.ir/article-1-2376-en.html
1- Kerman University of Medical Sciences, Kerman, Iran
2- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran , nshahrokhisar@yahoo.com
3- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
4- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, University of Medical Sciences, Kerman, Iran
5- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
Abstract:   (465 Views)
Background: The levels of IL-13, IL-4, IL-1B, TNF-α and IL-10 alter in the colon of people with ulcerative colitis. previous studies, it was found that shilajit (asphaltum) was effective in the improvement of ulcerative colitis.we guessed that the shilajit has been able to improve the ulcerative colitis by affecting the amount of cytokines. Objective: The aim of the present study was to investigate the effects of shilajit on IL-13, IL-4, IL-1B, TNF-α and IL-10 in ulcerative colitis. Methods: In this experimental study, 49 white male rats were randomly divided into 7 groups including sham groups, ulcerative colitis, Gavage vehicle, Gavage shilajit, sulfasalazine, Intra Anal Vehicle, Intra Anal shilajit. To produce ulcerative colitis 2 cc acetic acid (4%) was prescribed intra-rectal. 4 days after the induction of colitis, it was given 4 days: shilajit 250 mg / kg was used as a gavage or intra anal. Sulfasalazine was dosed at 250 mg / kg in the form of gavage. Results: The Gavage shilajit group increased IL-10, IL-4and decreased IL-1β, TNF-α compared to Gavage vehicle group. Shilajit has been able to close the levels of IL-4, IL-13, IL-10, TNF-α to normal values of the sham group. Conclusion: Considering that the weight ratio of intestinal rat to the body of rat in the shilajit groups was lower than that of the sulfasalazine group, it can be shown that shilajit has been able to more reduce inflammation by making a more suitable change in cytokines in comparison with sulfasalazine.
Full-Text [PDF 870 kb]   (92 Downloads)    
Type of Study: Research |
Received: 2018/11/25 | Accepted: 2019/08/6 | Published: 2020/09/6

References
1. Fuss IJ, Neurath M, Boirivant M, Klein JS, De La Motte C, Strong SA and et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol. 1996; 157(3): 1261-70. [DOI:10.1097/00024382-199703001-00528]
2. Sartor RB. Current concepts of the etiology and pathogenesis of ulcerative colitis and Crohn's disease. Gastroenterology Clin. North Am. 1995; 24(3): 475-507.
3. Katzung BG, Masters SB, Trevor AJ. Basic & clinical pharmacology. 2004; 10: 1033-52.
4. Galloway JB, Hyrich KL, Mercer LK, Dixon WG, Fu B, Ustianowski AP and et al. Anti-TNF therapy is associated with an increased risk of serious infections in patients with rheumatoid arthritis especially in the first 6 months of treatment: updated results from the British Society for Rheumatology Biologics Register with special emphasis on risks in the elderly. J. Rheumatol. 2010; 50(1): 124-31. [DOI:10.1093/rheumatology/keq242]
5. Musa RB, Usha L, Hibbeln J and Mutlu EA. TNF inhibitors to treat ulcerative colitis in a metastatic breast cancer patient: A case report and literature review. WJG. 2014; 20(19): 5912. [DOI:10.3748/wjg.v20.i19.5912]
6. Descamps-Latscha B, Herbelin A, Nguyen AT, Roux-Lombard P, Zingraff J, Moynot A and et al. Balance between IL-1 beta, TNF-alpha, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T cells, B cells, and monocytes. J. Immunol. 1995; 154(2): 882-92.
7. Ghaaazi Firozsalari F, Shahrokhi N, Khaksari Hadad M, Asadikaram G and Atashbar J. Effect of Shilajit on the Levels of Pro-inflammatory and Anti-inflammation Cytokines in Hepatic Injury in Male Rats. J. Mazandaran Univ. Med. Sci. 2018; 27(159): 1-13.
8. Saxena A, Kaur K, Hegde S, Kalekhan FM, Baliga MS and Fayad R. Dietary agents and phytochemicals in the prevention and treatment of experimental ulcerative colitis. J. Tradit. Complement. Med. 2014; 4(4): 203-17. [DOI:10.4103/2225-4110.139111]
9. Neelima S, Babu TN, Kumar MP and Kumar CH. Effect of shilajit on acetic acid induced inflammatory bowel disease in rats. IJARMPS. 2017; 8(2): 147-50.
10. Aziz S, Khaliq S, Ghani KS, Irshad M, Green IR and Hussain H. Phytochemical Screening and Biological Studies of Shilajit (Asphaltum). International Journal of Phytomedicine 2017; 9(1): 15-9. [DOI:10.5138/09750185.1883]
11. Mirza MA, Alam MN, Faiyazuddin M, Mahmood D, Bairwa R and Mustafa G. Shilajit: An ancient panacea. Int. J. Curr. Pharmaceut. Rev. Res. 2010; 1: 2-11.
12. Rege A, Juvekar P and Juvekar A. In vitro antioxidant and anti-arthritic activities of Shilajit. Int. J. Pharm. Pharm. Sci. 2012; 4(2): 650-3.
13. Shahrokhi N, Keshavarzi Z and Khaksari M. Ulcer healing activity of Mumijo aqueous extract against acetic acid induced gastric ulcer in rats. J. Pharm. Bioallied. Sci. 2015; 7(1): 56. [DOI:10.4103/0975-7406.148739]
14. Mona S, Neha S, Chhavi S, Ajay K and KM S. Asphaltum panjabinum: a new antioxidant in urolithiasis: a clinical study. JARBS. 2014; 6(2): 118-21.
15. Fuss IJ, Strober W. The role of IL-13 and NK T. cells in experimental and human ulcerative colitis. J. Mucosal. Immunology Res. 2008; 1(01): S31. [DOI:10.1038/mi.2008.40]
16. Berman D, Parker SM, Siegel J, Chasalow SD, Weber J, Galbraith S and et al. Blockade of cytotoxic T-lymphocyte antigen-4 by ipilimumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. Cancer Immun. 2010; 10(1): 11.
17. Reinacker H, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott R and et al. Enhanced secretion of tumor necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clin. Exp. Immunol. 1993; 94: 174-81. [DOI:10.1111/j.1365-2249.1993.tb05997.x]
18. Li M-C and He S-H. IL-10 and its related cytokines for treatment of inflammatory bowel disease. WJG. 2004; 10(5): 620. [DOI:10.3748/wjg.v10.i5.620]
19. Zurawski G and de Vries JE. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunology Today 1994; 15(1): 19-26. [DOI:10.1016/0167-5699(94)90021-3]
20. de Waal Malefyt R, Figdor CG, Huijbens R, Mohan-Peterson S, Bennett B and Culpepper J. Dang W, Zurawski G and de Vries JE. Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL-10. J. Immunol. 1993; 151(11): 6370-81.
21. Inoue S, Matsumoto T, Iida M, Mizuno M, Kuroki F, Hoshika K and et al. Characterization of cytokine expression in the rectal mucosa of ulcerative colitis: correlation with disease activity. AJG. 1999; 94(9): 2441-6. [DOI:10.1111/j.1572-0241.1999.01372.x]
22. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B and et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterol. 2005; 129(2): 550-64. [DOI:10.1016/j.gastro.2005.05.002]
23. Shahrokhi N, Asadikaram GH and Amirafzali F. Protective effect of Mumiju against acetic acid-induced ulcerative colitis in rats. AJP. 2018; 8(5): 457.
24. Kumar V, Abbas AK, Fausto N and Aster JC. Robbins and Cotran Pathologic Basis of Disease, Professional Edition E-Book: Elsevier Health Sciences, 2014.
25. Ran ZH, Chen C, Xiao SD. Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. Biomed Pharmacothe. 2008; 62(3): 189-96. [DOI:10.1016/j.biopha.2008.02.002]
26. Phaechamud T, Charoenteeraboon J, Wetwitayaklung P, Limmatvapirat C and Srichan T. Some Biological Activities and Safety of Mineral Pitch. SUSTJ. 2008; 2(2): 7-17.
27. Ran ZH, Chen C and Xiao SD. Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. Biomed. Pharmacothe. 2008; 62(3): 189-96. [DOI:10.1016/j.biopha.2008.02.002]
28. Noa M, Más R and Carbajal D. Effect of D-002 on acetic acid-induced colitis in rats at single and repeated doses. Pharmacol. Res. 2000; 41(4): 391-5. [DOI:10.1006/phrs.1999.0596]
29. MacPherson B and Pfeiffer C. Experimental production of diffuse colitis in rats. Digestion. 1978; 17(2): 135-50. [DOI:10.1159/000198104]
30. Fabia R, Willen R, Ar'Rajab A, Andersson R, Ahren B and Bengmark S. Acetic acid-induced colitis in the rat: a reproducible experimental model for acute ulcerative colitis. Eur. Sur. Res. 1992; 24(4): 211-25. [DOI:10.1159/000129209]
31. Hagar HH, El Medany A, El Eter E and Arafa M. Ameliorative effect of pyrrolidinedithiocarbamate on acetic acid-induced colitis in rats. Eur. J. Pharmacol. 2007; 554(1): 69-77. [DOI:10.1016/j.ejphar.2006.09.066]
32. McKelvey-Martin V, Green M, Schmezer P, Pool-Zobel B, De Meo M and Collins A. The single cell gel electrophoresis assay (comet assay): a European review. Mutat. Res. 1993; 288(1): 47-63. [DOI:10.1016/0027-5107(93)90207-V]
33. Chern CM, Liao JF, Wang YH and Shen YC. Melatonin ameliorates neural function by promoting endogenous neurogenesis through MT2 melatonin receptor in ischemic stroke mice. Free Rad. Biol. Med. 2012; 52(9): 1634-1647. [DOI:10.1016/j.freeradbiomed.2012.01.030]
34. Jung HC, Eckmann L, Yang S-k, Panja A, Fierer J, Morzycka-Wroblewska E and et al. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. JCI. 1995; 95(1): 55-65. [DOI:10.1172/JCI117676]
35. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 2010; 10(2): 131. [DOI:10.1038/nri2707]
36. Lih-Brody L, Powell SR, Collier KP, Reddy GM, Cerchia R, Kahn E and et al. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease DIGEST. 1996; 41(10): 2078-86. [DOI:10.1007/BF02093613]
37. Berg DJ, Davidson N, Kühn R, Müller W, Menon S, Holland G and et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4 (+) TH1-like responses. JCI. 1996; 98(4): 1010-20. [DOI:10.1172/JCI118861]
38. Zigmond E, Bernshtein B, Friedlander G, Walker CR, Yona S, Kim K-W and et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 2014; 40(5): 720-33. [DOI:10.1016/j.immuni.2014.03.012]
39. Kojouharoff G, Hans W, Obermeier F, MA NNEL D, Andus T, SCHO LMERICH J and et al. Neutralization of tumour necrosis factor (TNF) but not of IL‐1 reduces inflammation in chronic dextran sulphate sodium‐induced colitis in mice. J. Clin. Exp. Immunol. 1997; 107(2): 353-8. [DOI:10.1111/j.1365-2249.1997.291-ce1184.x]
40. West G, Matsuura T, Levine A, Klein J and Fiocchi C. Interleukin 4 in inflammatory bowel disease and mucosal immune reactivity. Gastroenterol. 1996; 110(6): 1683-95. [DOI:10.1053/gast.1996.v110.pm8964392]
41. Bertevello PL, Logullo ÂF, Nonogaki S, Campos FM, Chiferi V, Alves CC and et al. Immunohistochemical assessment of mucosal cytokine profile in acetic acid experimental colitis. Clinics 2005; 60(4): 277-86. [DOI:10.1590/S1807-59322005000400004]
42. Boirivant M, Fuss IJ, Chu A and Strober W. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. JEM. 1998; 188(10): 1929-39. [DOI:10.1084/jem.188.10.1929]
43. Rees V. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin. Exp. Immunol. 1998; 114(3): 385-91. [DOI:10.1046/j.1365-2249.1998.00728.x]
44. Cheah KY, Bastian SE, Acott TM, Abimosleh SM, Lymn KA and Howarth GS. Grape seed extract reduces the severity of selected disease markers in the proximal colon of dextran sulphate sodium-induced colitis in rats. Dig. Dis. Sci. 2013; 58(4): 970-7. [DOI:10.1007/s10620-012-2464-1]
45. Dharmani P, Leung P and Chadee K. Tumor necrosis factor-α and Muc2 mucin play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. PloS One 2011; 6(9): e25058. [DOI:10.1371/journal.pone.0025058]
46. da Silva MS, Sánchez-Fidalgo S, Talero E, Cárdeno A, da Silva MA, Villegas W and et al. Anti-inflammatory intestinal activity of Abarema cochliacarpos (Gomes) Barneby & Grimes in TNBS colitis model. J. Ethnopharmacol. 2010; 128(2): 467-75. [DOI:10.1016/j.jep.2010.01.024]
47. De Almeida ABA, Sanchez-Hidalgo M, Martín AR, Luiz-Ferreira A, Trigo JR, Vilegas W and et al. Anti-inflammatory intestinal activity of Arctium lappa L.(Asteraceae) in TNBS colitis model. J. Ethnopharmacol. 2013; 146(1): 300-10. [DOI:10.1016/j.jep.2012.12.048]
48. Ding TT. Therapeutic effects of Clostridium butyricum on experimental colitis induced by oxazolone in rats. WJG. 2009; 15: 007. [DOI:10.3748/wjg.15.1821]
49. Yang J, Zhao J, Nakaguchi T and Gregersen H. Biomechanical changes in oxazolone-induced colitis in BALB/C mice. J. Biomechanics 2009; 42(7): 811-7. [DOI:10.1016/j.jbiomech.2009.01.028]
50. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR and Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterol. 1989; 96(2): 795-803. [DOI:10.1016/S0016-5085(89)80079-4]
51. Isik F, Akbay TT, Yarat A, Genc Z, Pisiriciler R, Caliskan-Ak E and et al. Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats. Dig. Dis. Sci. 2011; 56(3): 721-30. [DOI:10.1007/s10620-010-1333-z]
52. Elson CO, Sartor RB, Tennyson GS and Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterol. 1995; 109(4): 1344-67. [DOI:10.1016/0016-5085(95)90599-5]
53. Yu Q, Zhu S, Zhou R, Yi F, Bing Y, Huang S and et al. Effects of sinomenine on the expression of microRNA-155 in 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis in mice. PloS One. 2013; 8(9): e73757. [DOI:10.1371/journal.pone.0073757]
54. Ni J, Chen S and Hollander D. Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut. 1996; 39(2): 234-41. [DOI:10.1136/gut.39.2.234]
55. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS and Strober W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity. 2002; 17(5): 629-38. [DOI:10.1016/S1074-7613(02)00453-3]
56. Tahan G, Gramignoli R, Marongiu F, Aktolga S, Cetinkaya A, Tahan V and et al. Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic-acid-induced colitis in rats. Dig Dis. Sci. 2011; 56(3): 715-20. [DOI:10.1007/s10620-010-1364-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2020 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb