year 19, Issue 74 (6-2020)                   J. Med. Plants 2020, 19(74): 129-144 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tayefeh S, Mahna N, Kazemitabar S K, Ghasemiomran V. The effect of silver nanoparticles on the growth and antioxidants of transgenic hairy roots in hyssop (Hyssopus officinalis, H. angustifolius). J. Med. Plants. 2020; 19 (74) :129-144
1- Department of Horticultural Sciences, University of Tabriz, Tabriz, Iran
2- Department of Horticultural Sciences, University of Tabriz, Tabriz, Iran ,
3- Department of Biotechnology and Plant Breeding, Sari University of Agriculture and Natural Resources, Mazandaran, Iran
4- Department of Biotechnology and Plant Breeding, Genetics Research Institute, University of Agriculture and Natural Resources, Sari University, Mazandaran, Iran
Abstract:   (648 Views)
Background: Nowadays, biotechnological methods such as transgenic hairy root culture and application of elicitors have become an attractive source for secondary metabolites production. Hyssop species (Hyssopus spp.) having active ingredients including antioxidants such as phenolics, in this plant have shown anti-mutagenic, anti-carcinogenic and antiglycemic effects. Objective: The present study was conducted to investigate the effect of silver nanoparticles on the growth and antioxidants of transgenic hairy root in two Hyssopus species including H. officinalis and H. angustifolius. Methods: In this experiment, we used silver nanoparticles concentrations of 0, 0.1, 0.2, 0.3 mg/l on transgenic hairy roots and Agrobacterium rhizogenes ATCC15834 strain for induction of hairy roots. Extraction of the samples were performed following ultrasonic method. Total phenolics content were determined using spectrophotometry. The antioxidant activity (AOA) of the extract were evaluated through 2, 2-dipheny l-1-picryl-hydrazy l (DPPH) method. Results: The results showed that silver nanoparticles as an elicitor had significant effect on the measured traits. The highest dry weight and fresh weight of the transgenic hairy roots were observed as much as 3.8 and 16 g/l in H. angustifolius and 3.2 and 14 g/l in H. officinalis, respectively. Which were caused by silver nanoparticles at the concentration of 0.1 mg/l, The amount of total antioxidants in H. angustifolius and H. officinaliswere 90.81% and 89.84%, respectively. In this study, we could observe relationship between antioxidant activity and plant phenolic content. Conclusion: In general, we found that 0.1 mg/l silver nanoparticles could improve the growth of transgenic hairy roots and increase their phenolics and antioxidants content.
Full-Text [PDF 653 kb]   (295 Downloads)    
Type of Study: Research | Subject: Biotechnology
Received: 2018/10/23 | Accepted: 2019/02/26 | Published: 2020/07/21

1. Dzhumaev KhK. Dynamics of essential oil accumulation in (Hyssopus seravschanicus). Uzbekskii Biologicheskii Zhurnal. 1986; 6: 31-33.
2. Kochan E, Wysokinska H and Chmiel A. Rosmarinic acid and other phenolic acids in hairy roots of (Hyssopus officinalis). Natur forsch. 1999; 54c, 11.16182-185. [DOI:10.1515/znc-1999-1-204]
3. Gollapudi S, Shara HA, Aggarval S, Byers LD, Ensley HE and Gupta S. Isolation of a previously unidentified polysacharide (MAR - 10) from (Hyssopus officinalis) that exhibits strong activity agains human imunodeficiency virus type 1. Biochem. Biophys. Res. Commun. 1995; 210: 145-151. [DOI:10.1006/bbrc.1995.1639]
4. Gorunovic M, Bogavac P, Chalchat J and Chabardi J. Essential oil of (Hyssopus officinalis L.) Lamiaceae of montenegro original. J. Essential. Oil Res. 1995; 7: 39-43. [DOI:10.1080/10412905.1995.9698459]
5. Vallejo M, Herraiz J, Perez-Alonso M and Velasco Negueruela A. Volatile oil of (Hyssopus officinalis L) from Spain. J. Essential Oil Res. 1995; 7: 567-568. [DOI:10.1080/10412905.1995.9698590]
6. Garg S, Naqvi AA, Singh A, Ram G and Kumar S. Composition of essential oil from an annual crop of (Hyssopus officinalis) grown in Indian plains. Flavor. Frag. J. 1999; 14: 170-172.<170::AID-FFJ808>3.0.CO;2-Q [DOI:10.1002/(SICI)1099-1026(199905/06)14:33.0.CO;2-Q]
7. Mitic V and Dordevic S. Essential oil composition of (Hyssopus officinalis L.) cultivated in Serbia. Facta Universitatis, Physics Chemistry and Technology 2000; 2: 105-108.
8. Ozer H, Sahin F, Kilic H and Gulluce M. Essential oil composition of (Hyssopus officinalis L.) subsp. Angustifolius (Bieb.) Archangelic from Turkey. Flavor Fragr. J. 2005; 20: 42 44. [DOI:10.1002/ffj.1421]
9. Kizil S, Hasimi N, Tolan V, Kilin E and Karatas H. Chemical composition, antimicrobial and antioxidant activities of hyssop (Hyssopus officinalis L.) essential oil. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2010; 38(3): 99- 103.
10. Kizil S, Toncer O, Ipek A, Arslan N, Saglam S and Khawar K.M. Blooming stages of Turkish hyssop (Hyssopus officinalis L.) affect essential oil composition. Acta Agriculture Scandinavia, Section B-Soil and Plant Science, 2008; 58(3): 273-279. [DOI:10.1080/09064710701647297]
11. Said-Al Ahl H, Abbas Z, Sabra A and Tkachenko K. Essential oil composition of (Hyssopus officinalis) cultivated in Egypt. International Journal of Plant Research. 2015; 1(2): 49-53.
12. Mojab F, Mosadegh M, Monsefesfahani H.R and Najari A. Examination of retail journalism and identification of components essential oil (Hyssopus officinalis). Journal of Pazhohandeh. 2002; 8(2): 9-15. (In Persian).
13. Shun YM , Wen YH , Yong CY and Jian GS. Two benzyl dihydroflavones from phellinus igniarius. Chin. J. Chem. 2003; 14(8): 810-13.
14. Wesołowska A, Jadczak D and Grzeszczuk M. Essential oil composition of hyssop (Hyssopus officinalis L.) cultivated in north-western Poland. Herba Polonica. 2010; 56(1): 57-65.
15. Brijwal L and Tamta S. Agrobacterium rhizogenes mediated hairy root induction in endangered Berberis aristata DC. Springer Plus 2015; 4: 443-453. [DOI:10.1186/s40064-015-1222-1]
16. Angelova Z, Georgiev S and Roos W. Elicitation of plants. Biotechnol Biotechnol Equip; 2006; 20: 72-83. [DOI:10.1080/13102818.2006.10817345]
17. Odjakova M and Hadjiivanova C. The complexity of pathogen defense in plants. Bulg J. Plant Physiol. 2001; 27(1-2): 101-109.
18. Mahna N, Vahed SZ and Khani S. Plant In vitro Culture goes Nano: Nanosilver-Mediated Decontamination of Ex vitro Explants. J. Nanomed. Nanotechol. 2013; 4: 161. [DOI:10.4172/2157-7439.1000161]
19. Yousefzaie F, Pour Akbar L and Farhadi K. The Effect of Silver Nanoparticles on Some Morphological and Physiological Indices of Basil (Ocimum basilicum L.). Iran. Plant Physiol. Biochem. 2015; 19(1): 208-9.
20. Kayhani Behrouz M, Mohammad Parast B and Qanati F. Investigating the effect of silver nanoparticles on some secondary metabolites of (Achillea millefolium L.) Thesis, University of Malayer. 2013.
21. Khodayari M, Omidi M, Shah Nejat Bushehri A, Yazdani D, Naqvi MR and Kadkhoda Z Effect biological elicitor and nano elicitor on increasing the production of alkaloids in opium poppy (Papaver somniferum). Iran. Horticult. Sci. 2015; 45: 287-295.
22. Hazrati Jahan R, Zare N, Dezhsetan S and Sheikhzadeh Mosaddeg P. Enhanced Taxol ¬precursor. Sci. J. Manag Sys. 2017; 33(1): 73-89.
23. Parsa M and Zeinali A. Effects of salicylic acid elicitor on the production of tropane alkaloids (atropine and scopolamine) in hairy roots and in vitro roots cultures of (Hyoscyamus niger L.). Sci. J. Manag. Sys. 2016; 32(4): 655-666.
24. Riahi-Madvar A, Yousefi K and Nasiri-Bezenjani M. Positive effect of Cu and yeast extract elicitors on the content of rosmarinic acid in (Melissa offisinalis L.). Sci. J. Manag. Sys. 2014; 30: 714-723.
25. Kheiry A, Tori H, Mortazavi N. Effects of drought stress and jasmonic acid elicitors on morphological and phytochemical characteristics of peppermint (Mentha piperita L.). Sci J Manag Sys. 2017; 33(2): 268-280.
26. Murashige T and Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 1962; 15: 473-497. [DOI:10.1111/j.1399-3054.1962.tb08052.x]
27. Marwani E, Pratiwi D, Wardhani K and Esyanti R. Development of hairy root culture of (Andrographis Paniculata) for in Vitro Andrographollide Production. Journal of Medical and Bioengineering 2015; 4(6): 446-450. [DOI:10.12720/jomb.4.6.446-450]
28. Doyle J.J. and Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987; 19: 11-15.
29. Sambrook J and Russell DW. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 2001, (2344 pp).
30. Sahraroo A, Babalar M, Mirjalili Moghaddam M. and Nejad Ebrahimi S In-vitro callus induction and rosmarinic acid quantification in callus culture of (Satureja khuzistanica) jamzad (Lamiaceae). Iran. J. Pharm. Res. 2014; 13 (4): 1447-1456.
31. Waterhouse A. Folin-Ciocalteau micro method for total phenol in wine. no date), http://waterhouse. ucdavis. edu/phenol/folinmicro. Htm. 1999 (Accessed: May, 2005).
32. Burits M, Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res. 2000; 14: 323-328.<323::AID-PTR621>3.0.CO;2-Q [DOI:10.1002/1099-1573(200008)14:53.0.CO;2-Q]
33. Kabirnataj S, Zolala J, Nematzadeh GA and Shokri E. Optimization of hairy root culture establishment in Chicory plants (Cichorium intybus) through inoculation by Agrobacterium rhizogenes. Crop Biotechnol. 2013; 4: 61-75.
34. Cheynier V, Comte G, Davies KM, Lattanzio V and Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol biochem: PPB/Societe francaise de physiologie vegetale, 72: 1-20. [DOI:10.1016/j.plaphy.2013.05.009]
35. He Ch, Gi X, Pan Ym, Wang H, Wang K and Liang M. Antioxidant Activity Of Alcoholic Extract Of (Agrimonia Pilosa) Ledeb. Med. Chem. Res. 19(5): 448-61. [DOI:10.1007/s00044-009-9201-0]
36. Ebrahimzadeh Ma, Nabavi Sf and Nabavi Sm. Antioxidant Activities Of Methanol Extract Of (Sambucus Ebulus) L. Flower. Pak J Boil Sci. 2009; 12(5): 447-50. [DOI:10.3923/pjbs.2009.447.450]
37. Fukumoto LR and Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000; 48(8): 3597-604. [DOI:10.1021/jf000220w]
38. Damien Dorman H J, Koşar M, Kahlos K, Holm Y and Hiltunen R. Antioxidant Properties and Composition of Aqueous Extracts from Mentha Species, Hybrids, Varieties, and Cultivars. J. Agric. Food Chem. 2003; 51 (16): 4563-9. [DOI:10.1021/jf034108k]
39. Arumugam P, Ramamurthy P and Ramesh A. Antioxidant and Cytotoxic Activities of Lipophilic and Hydrophilic Fractions of (Mentha Spicata L.) (Lamiaceae). Inter. J. Food Properties. 2010; 13(1): 23-31. [DOI:10.1080/10942910802144329]
40. Cheung S and TAI J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncology reports. 2007; 17: 1525-31. [DOI:10.3892/or.17.6.1525]
41. Zeng HH, Tu PF, Zhou K, Wang H, Wang B and Lu JF. Antioxidant properties of phenolic diterpenes from (Rosmarinus officinalis). Acta Pharmacol Sin. 2001; 22 (12): 1094-8.
42. Bai N, He K, Roller M, Lai CS, Shao X, Pan MH and Ho CT. Flavonoids and phenolic compounds from (Rosmarinus officinalis). J. Agric Food Chem. 2010; 12: 58(9): 5363-7. [DOI:10.1021/jf100332w]
43. Katalinic V, MIlos M, Kulisic T and Jukic M. Sceerning of 70 medical plant extracts for antioxidant capacity and total phenols. Food Chem. 2006; 94: 550-577. [DOI:10.1016/j.foodchem.2004.12.004]
44. Theriault M, Caillet S, Kermash S and Lacroix M. Antioxidant, antiradical and at mutagenic activity of phenolic compounds present in maple products. Food Chem. 2006; 98: 490-501. [DOI:10.1016/j.foodchem.2005.05.079]
45. Golluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A, Polissiou M, Adiguzel A and Ozken H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from (Mentha longifolia L.) ssp. longifolia. Food Chem. 2007; 103: 1449-1456. [DOI:10.1016/j.foodchem.2006.10.061]
46. Zhu H, Han J, Xiao J Q and Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring 2008; 10(6): 713-717. [DOI:10.1039/b805998e]
47. Yin L, Cheng Y, Espinasse B, Colman B P, Auffan M, Wiesner M. More than the ions: the effects of silver nanoparticles on (Lolium multiflorum). Environmental Science & Technology 2011; 45(6): 2360-2367. [DOI:10.1021/es103995x]
48. Haverkamp R and Marshall A. The mechanism of metal nanoparticle formation in plants: limits on accumulation. Journal of Nanoparticle Research 2009; 11(6): 1453-1463. [DOI:10.1007/s11051-008-9533-6]
49. Yousefi K, Riahi Madvar A and A B. Effect of flavone synthase gene expression and elicitor silver and copper on some biochemical parameters in seedlings of native Iranian cumin (Cuminum cyminum L). J. Plant (Iran. J. Biolog). 2016; 28: 210-223.
50. Saboura A, Ahmadi A, Zeynali A, Parsa M. Comparison Between the Contents of Phenolic and Flavonoid Compounds and Aerial Part Antioxidant Activity in Scutellaria pinnatifida in Two NorthIranian Populations. J. Rafsanjan Uni. Med. Sci. 2014; 13(3): 249-266.
51. Kamalizadeh M, Bihamta MR, Peyghambari SA and J H. Expression of Genes Involved in Rosmarinic Acid Biosynthesis Pathway in Dragonhead Affected by Nanoparticles. Genetic 3RD millennium. 2014; 12: 3428-3437.
52. Yousefi K, Riahi A and Baghizadeh A. Investigation of the effects of Ag and Cu elicitors on flavone synthase 1 gene expression and some biochemical parameters on (Cuminum cyminum L.) endemic from Iran. J. Plant Res. 2015; 28(1): 210-223.
53. Matkowski A. Plant in vitro culture for the production of antioxidants "a review". Biotechnol adv. 2008; 26(6): 548-560. [DOI:10.1016/j.biotechadv.2008.07.001]
54. Jeandet P, Delaunois B, Aziz A, Donnez D, Vasserot Y, Cordelier S and Courot E. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. J. Bio. Med. Rese. 2012. [DOI:10.1155/2012/579089]
55. Zhang Y. Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat Res-Fund. Mol. M. 2004; 555(1-2): 173-190. [DOI:10.1016/j.mrfmmm.2004.04.017]
56. Asghari G, Mostaejer A, Sadeghi Ali Abadi H and Nakhaee A. Effect of silver nitrate and salicylic acid on taxol production at the plant (Taxus baccata L.). J. Med. Plants 2009; 5: 74-78.
57. Singh R and Lillard JW. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009; 86(3): 215-223. [DOI:10.1016/j.yexmp.2008.12.004]
58. Khoshbakhat T, Bahadori F, Khalighi A and Ardalan MM. The effect of plant growth promoting rhizobacteria on the macro elements and performance aloe vera plant in a greenhouse. J. Crop. Physiol. 2012; 2: 45-59.
59. Jin JH, Shin JH, Kim JH, Chung IS and Lee HJ. Effect of chitosan elicitation and media components on the production of anthraquinone colorants in madder (Rubia akane Nakai) cell culture. Biotechnol Bioprocess Eng. 1999; 4: 300. [DOI:10.1007/BF02933757]
60. Chang JH, Shin JH, Chung IS and Lee HJ. Improved menthol production from chitosan-elicited suspension culture of Mentha piperita. Biotechnol. 1998; 20(12): 1097-1099. [DOI:10.1023/A:1005396924568]
61. Naguib AE-MM, El-Baz FK, Salama ZA, Hanaa HAEB, Ali HF, Gaafar AA. Enhancement of phenolics, flavonoids and glucosinolates of Broccoli (Brassica olaracea, var. Italica) as antioxidants in response to organic and bio-organic fertilizers. J Saudi Soc of Agricult Sci. 2012; 11(2): 135-142. [DOI:10.1016/j.jssas.2012.03.001]
62. Yang F, Hong F, You W, Liu C, Gao F, Wu C and Yang P. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res. 2006; 110(2): 179-190. [DOI:10.1385/BTER:110:2:179]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb