year 18, Issue 72 (11-2019)                   J. Med. Plants 2019, 18(72): 149-159 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajizadeh Moghadam A, Parhizkar M, Sirafi R, Khanjani Jelodar S. Therapeutic Effects of Hesperetin and Nano Hesperetin on Ketamine-Induced Hepatotoxicity. J. Med. Plants 2019; 18 (72) :149-159
URL: http://jmp.ir/article-1-1959-en.html
1- Associate Professor of Animal Physiology, Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran , a.hajizadeh@umz.ac.ir
2- M.Sc of Animal Physiology, Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
3- Assistant Professor, Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
4- PhD student of Animal Physiology, Department of Animal Biology, Faculty of Biology Sciences, Shahid Beheshti University, Tehran, Iran
Abstract:   (1855 Views)
Background: Ketamine (KET) causes oxidative stress and liver damage. Hesperetin plays an important role in the prevention of inflammatory processes and associated with oxidative stress.
Objective: The purpose of this study was to analyze the protective role of hesperetin and its nanocrystal on hepatotoxicity induced by ketamine in mice.
Methods: In this research, 30 male mice were divided into six groups: control, poisoned (KET 10 mg/kg/10 day injected intraparitary), hesperetin and hesperetin nanoparticles treated poisoning groups (10 and 20 mg/kg for four weeks orally after KET administration). Finally, the malondialdehyde (MDA) and glutathione (GSH) levels, Catalase (CAT), Superoxide dismutase (SOD), Glutathione peroxidase (GPX) and Glutathione reductase (GRX)  activity in liver tissue as well as the its histological changes were investigated.
Results: The level of GSH and antioxidant enzyme activity in the liver were significantly
(P <0.05) decreased in the ketamin indused rat, and hesperetin and its nano significantly were increased (P <0.01) GSH level and antioxidant enzyme activity. In contrast, MDA level in the liver was significantly (P <0.01) increased in the the ketamin poioned rat, and nano hesperetin suppressed the ketamin-induced lipid proxidation. Ketamine also decreased number of hepatocytes (P<0.001) and diameter of sinusoids (P <0.05) in toxic mice. Whereas, Nano hesperetin increased antioxidant enzymes activities, diameter and nucleus diameter of hepatocytes and decreased MDA level (P <0.05).
Conclusion: The results of this study indicated that hesperetin and especially nano hesperetin due to antioxidant effects cause hepatoprotective against KET-induced oxidative stress.
Full-Text [PDF 1140 kb]   (782 Downloads)    
Type of Study: Research |
Received: 2017/12/18 | Accepted: 2018/09/12 | Published: 2019/10/28

References
1. Domino EF, Chodoff P and Corssen G. Pharmacologic effects of CI‐581, a new dissociative anesthetic, in man. Clin. Pharmacol. Ther. 1965; 6: 279-291. [DOI:10.1002/cpt196563279]
2. Cvrček P. Side effects of ketamine in the long-term treatment of neuropathic pain. Pain Medicine 2007; 9 (2): 253-257. [DOI:10.1111/j.1526-4637.2007.00314.x]
3. Noppers IM, Niesters M, Aarts LP, Bauer MC, Drewes AM, Dahan A and Sarton EY. Drug-induced liver injury following a repeated course of ketamine treatment for chronic pain in CRPS type 1 patients: a report of 3 cases. Pain. 2011; 152: 2173-2178. [DOI:10.1016/j.pain.2011.03.026]
4. Venâncio C, Antunes L, Félix L, Rodrigues P, Summavielle T and Peixoto F. Chronic ketamine administration impairs mitochondrial complex I in the rat liver. Life Sci. 2013; 93: 464-470. [DOI:10.1016/j.lfs.2013.08.001]
5. Patlevič P, Vašková J, Švorc Jr P, Vaško L and Švorc P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. 2016; 5: 250-258. [DOI:10.1016/j.imr.2016.07.004]
6. Kalkan Y, Tomak Y, Altuner D, Tumkaya L, Bostan H, Yilmaz A, ... and Turan A. Hepatic effects of ketamine administration for 2 weeks in rats. Human & Experimental Toxicol. 2014; 33 (1): 32-40. [DOI:10.1177/0960327112472990]
7. Asadi-Samani M, Kafash-Farkhad N, Azimi N, Fasihi A, Alinia-Ahandani E and Rafieian-Kopaei M. Medicinal plants with hepatoprotective activity in Iranian folk medicine. Asian Pac. J. Trop. Biomed. 2015; 5: 146-157. [DOI:10.1016/S2221-1691(15)30159-3]
8. Babukumar S, Vinothkumar V, Velu P, Ramachandhiran D and Ramados Nirmal M. Molecular effects of hesperetin, a citrus flavanone on7, 12-dimethylbenz (a) anthracene induced buccal pouch squamous cell carcinoma in golden Syrian hamsters. Arch. Physiol. Biochem. 2017; 123 (4): 265-278. [DOI:10.1080/13813455.2017.1317815]
9. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R and Iranshahi M. Antioxidant and anti‐inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. ‎Phytother. Res. 2015; 29: 323-331. [DOI:10.1002/ptr.5256]
10. Kiasalari Z, Khalili M, Baluchnejadmojarad T, Roghani M. Protective effect of oral hesperetin against unilateral striatal 6-hydroxydopamine damage in the rat. Neurochem. Res. 2016; 41: 1065-1072. [DOI:10.1007/s11064-015-1796-6]
11. Shimouchi A, Yokota H, Ono S, Matsumoto C, Tamai T, Takumi H, Narayanan SP, Kimura S, Kobayashi H, Caldwell RB and Nagaoka T. Neuroprotective effect of water-dispersible hesperetin in retinal ischemia reperfusion injury. Jpn. J. Ophthalmol. 2016; 60: 51-61. [DOI:10.1007/s10384-015-0415-z]
12. Barreca D, Laganà G, Toscano G, Calandra P, Kiselev MA, Lombardo D and Bellocco E. The interaction and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries. Biochim. Biophys. Acta. 2017; 1861: 3531-3539. [DOI:10.1016/j.bbagen.2016.03.014]
13. Roohbakhsh A, Parhiz H, Soltani F, Rezaee R and Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin-a mini-review. Life Sci. 2014; 113: 1-6. [DOI:10.1016/j.lfs.2014.07.029]
14. dos Passos Menezes P, Frank LA, dos Santos Lima B, de Carvalho YM, Serafini MR, Quintans-Júnior LJ, Pohlmann AR, Guterres SS and de Souza Araújo AA. hesperetin-loaded lipid-core nanocapsules in polyamide: a new textile formulation for topical drug delivery. ‎Int. J. Nanomed. 2017; 12: 2069. [DOI:10.2147/IJN.S124564]
15. Gurushankar K, Nazeer SS, Jayasree RS and Krishnakumar N. Evaluation of antitumor activity of hesperetin-loaded nanoparticles against DMBA-induced oral carcinogenesis based on tissue autofluorescence spectroscopy and multivariate analysis. J. Fluoresc. 2015; 25: 931-939. [DOI:10.1007/s10895-015-1575-4]
16. Jeevanandam J, San Chan Y and Danquah MK. Nano-formulations of drugs: recent developments, impact and challenges. Biochimie. 2016; 128: 99-112. [DOI:10.1016/j.biochi.2016.07.008]
17. Kakran M, Sahoo GN and Li L. Fabrication of nanoparticles of silymarin, hesperetin and glibenclamide by evaporative precipitation of nanosuspension for fast dissolution. Pharm. Anal. Acta. 2015; 6: 2. [DOI:10.4172/2153-2435.1000326]
18. Cvrček P. Side effects of ketamine in the long-term treatment of neuropathic pain. Pain Medicine 2007; 9 (2): 253-257. [DOI:10.1111/j.1526-4637.2007.00314.x]
19. Moghaddam A.H. and Zare M. Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer's disease. Biomedicine & Pharmacotherapy 2018; 97: 1096-1101. [DOI:10.1016/j.biopha.2017.11.047]
20. Genet S, Kale RK and Baquer NZ. Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonella foenum graecum). Mol. Cell. Biochem. 2002; 236: 7-12.
21. Fukuzawa K and Tokumurai A. Glutathione peroxidase activity in tissues of vitamin E-deficient mice. J. Nutr. Sci. Vitaminol. 1976; 22: 405-407. [DOI:10.3177/jnsv.22.405]
22. Sharma M and Gupta YK. Chronic treatment with Trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci. 2002; 71: 2489-2498. [DOI:10.1016/S0024-3205(02)02083-0]
23. Romero FJ, Romá J, Bosch-Morell F, Romero B, Segura-Aguilar J, Llombart-Bosch A and Ernster L. Reduction of brain antioxidant defense upon treatment with butylated hydroxyanisole (BHA) and Sudan III in Syrian golden hamster. Neurochem. Res. 2000; 25: 389-393. [DOI:10.1023/A:1007549222553]
24. Kokkinou M, Ashok AH and Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol. Psychiatry. 2018; 23 (1): 59. [DOI:10.1038/mp.2017.190]
25. Dinis-Oliveira RJ. Metabolism and metabolomics of ketamine: a toxicological approach. J. Forensic Sci. 2017; 2: 2-10. [DOI:10.1080/20961790.2017.1285219]
26. Venâncio C, Antunes L, Félix L, Rodrigues P, Summavielle T and Peixoto F. Chronic ketamine administration impairs mitochondrial complex I in the rat liver. Life Sci. 2013; 93: 464-470. [DOI:10.1016/j.lfs.2013.08.001]
27. Abdel-Salam OM, Youness ER, Mohammed NA, Omara EA and Sleem AA. Effect of ketamine on oxidative stress following lipopolysaccharide administration. Comp. Clin. Path. 2013; 24: 53-63. [DOI:10.1007/s00580-013-1854-x]
28. Wang J, Zhu H, Yang Z and Liu Z. Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J. Pharmacol. 2013; 45: 395. [DOI:10.4103/0253-7613.115015]
29. Miler M, Živanović J, Ajdžanović V, Oreščanin-Dušić Z, Milenković D, Konić-Ristić A, Blagojević D, Milošević V and Šošić-Jurjević B. Citrus flavanones naringenin and hesperetin improve antioxidant status and membrane lipid compositions in the liver of old-aged Wistar rats. Exp. Gerontol. 2016; 84: 49-60. [DOI:10.1016/j.exger.2016.08.014]
30. Shete G, Pawar YB, Thanki K, Jain S and Bansal AK. Oral bioavailability and pharmacodynamic activity of hesperetin nanocrystals generated using a novel bottom-up technology. Mol. Pharm. 2015; 12: 1158-1170. [DOI:10.1021/mp5008647]
31. Monfared AL and Salati AP. Histomorphometric and biochemical studies on the liver of rainbow trout (Oncorhynchus mykiss) after exposure to sublethal concentrations of phenol. Toxicol. Ind. Health. 2013; 29: 856-861. [DOI:10.1177/0748233712451765]
32. Braunbeck T, Storch V and Bresch H. Species-specific reaction of liver ultrastructure in zebrafish (Brachydanio rerio) and trout (Salmo gairdneri) after prolonged exposure to 4-chloroaniline. Arch. Environ. Contam. Toxicol. 1990; 19: 405-418. [DOI:10.1007/BF01054986]
33. Ghosh D, Choudhury ST, Ghosh S, Mandal AK, Sarkar S, Ghosh A, Saha KD and Das N. Nanocapsulated curcumin: oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chem. Biol. Interact. 2012; 195: 206-214. [DOI:10.1016/j.cbi.2011.12.004]
34. Ross SA, Srinivas PR, Clifford AJ, Lee SC, Philbert MA and Hettich RL. New technologies for nutrition research. J. Nutr. 2004; 134: 681-685. [DOI:10.1093/jn/134.3.681]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb