1. Wu S and Chappell J. Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr. Opin. Biotechnol. 2008; 19(2): 145-152, Apr. [
DOI:10.1016/j.copbio.2008.02.007]
2. Abdel-Farid I. B, Kim H. K, Choi Y. H, and Verpoorte R. Metabolic characterization of Brassica rapa leaves by NMR spectroscopy, J. Agric. Food Chem. 2007; 55(19): 7936-7943, [
DOI:10.1021/jf071294b]
3. Ren W, Qiao Z, Wang H, Zhu L and Zhang L. Flavonoids: promising anticancer agents. Med. Res. Rev. 2003; 23(4): 519-534, [
DOI:10.1002/med.10033]
4. Wiseman R.L, Zhang Y, Lee KPK, Harding HP, Haynes CM, Price J, Sicheri F and Ron D. Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol. Cell. 2010; 38(2): 291-304. [
DOI:10.1016/j.molcel.2010.04.001]
5. Bajpai D and Vankar P. S. Antifungal textile dyeing with mahonia napaulensis dc leaves extract based on its antifungal activity. Fibers Polym. 2007; 8(5): 487. [
DOI:10.1007/BF02875870]
6. Seyoum A, Asres K and El-Fiky F. K. Structure-radical scavenging activity relationships of flavonoids. Phytochemistry 2006; (67)18: 2058-2070. [
DOI:10.1016/j.phytochem.2006.07.002]
7. Ali F, Rahul F, Naz S, yoti J and Siddique Y. H. Health functionality of apigenin: a review. Int. J. Food Prop. 2017; 20(6): 1197-1238. [
DOI:10.1080/10942912.2016.1207188]
8. Salehi B, Venditti A, Sharifi-Rad M, Kregiel D, Sharifi-Rad J, Durazzo A, et al. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019; 20(6): 1305. [
DOI:10.3390/ijms20061305]
9. Donovan J. L, Manach C, Faulks R. M and Kroon P. A. Absorption and metabolism of dietary plant secondary metabolites. Plant Second. Metab. Occur. Struct. role Hum. diet. 2006; 303-351. [
DOI:10.1002/9780470988558.ch8]
10. Nasr Bouzaiene N, Chaabane F, Sassi A, Chekir-Ghedira L and Ghedira K. Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci. 2016; 144: 80-85, [
DOI:10.1016/j.lfs.2015.11.030]
11. Hertog M. G. L and Hollman P. C. H. Potential health effects of the dietary flavonol quercetin. Eur. J. Clin. Nutr. (United Kingdom), 1996.
12. Smith C, Lombard K. A, Peffley E. B, and Liu W. Genetic analysis of quercetin in onion (Allium cepa L.)' Lady Raider'.Texas J. Agric. Nat. Resour., 2003; 16: 24-28.
13. Ferenczyova K, Kalocayova B, and Bartekova M. Potential implications of quercetin and its derivatives in cardioprotection. Int. J. Mol. Sci. 2020; 21(5). [
DOI:10.3390/ijms21051585]
14. Anand David A. V, Arulmoli R, and Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn. Rev. 2016; 10(20): 84-89. [
DOI:10.4103/0973-7847.194044]
15. Massi A, Bortolini O, Ragno D, Bernardi T, Sacchetti G, Tacchini M and Risi CD. Research progress in the modification of quercetin leading to anticancer agents. Molecules. 2017; 22(8): 1270. [
DOI:10.3390/molecules22081270]
16. Wang W, Sun C, Mao L, Ma P, Liu F, Yang J and Gao Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci. Technol. 2016; 56: 21-38. [
DOI:10.1016/j.tifs.2016.07.004]
17. Selvaraj K, Chowdhury R and Bhattacharjee C. Isolation and structural elucidation of flavonoids from aquatic fern Azolla microphylla and evaluation of free radical scavenging activity. Int. J. Pharm. Sci. 2013; 5(3): 743-749.
18. Sambandam B, Thiyagarajan D, Ayyaswamy A, Raman P, Kulasekaran J and Venkatasamy H. Extraction and isolation of flavonoid quercetin from the leaves of Trigonella foenum-graecum and their antioxidant activity. Int. J. Pharm. Pharm. Sci. 2016; 8(6): 120-124.
19. Shen C. C, Chang Y. S and Ho L.K. Nuclear magnetic resonance studies of 5, 7-dihydroxyflavonoids. Phytochemistry 1993; [
DOI:10.1016/0031-9422(93)85370-7]
20. Berashvili D. T, Alaniya M. D, Bakuridze A. D, Gvazava L. N, Balansard G and Elias R. Apigenin glucuronide from Perilla nankinensis leaves. Chem. Nat. Compd. 2005; 1(41): 97-98. [
DOI:10.1007/s10600-005-0086-y]
21. Peng H, Zhang X and Xu J. Apigenin-7-O-β-D-glycoside isolation from the highly copper-tolerant plant Elsholtzia splendens. J. Zhejiang Univ. B. 2016; 17(6): 447-454. [
DOI:10.1631/jzus.B1500242]
22. YANG A, LU R and SHI Y. 2 (1. College of Life and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 3. Chengdu Institute of Biology, Chinese Academy of Sciences, Che," Chinese Pharm. J. 2007; 19.
23. Liu J, Chen L, Cai S, and Wang Q. Semisynthesis of apigenin and acacetin-7-O-β-D-glycosides from naringin and their cytotoxic activities. Carbohydr. Res. 2012; 357: 41-46. [
DOI:10.1016/j.carres.2012.05.013]