year 24, Issue 93 (5-2025)                   J. Med. Plants 2025, 24(93): 27-39 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zafaranieh M, Mirahmadi S F, Ghorbani Nohooji M. Adaptation of Carum carvi L. to high altitudes: investigating the effect of altitude on seed physiological dormancy. J. Med. Plants 2025; 24 (93) :27-39
URL: http://jmp.ir/article-1-3806-en.html
1- Department of Agriculture and Natural Rescores, Technical and Engineering Faculty, Velayat University, Iranshahr, Iran , mohsen.zafaranieh245@gmail.com
2- Department of Agriculture and Natural Rescores, Technical and Engineering Faculty, Velayat University, Iranshahr, Iran
3- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
Abstract:   (256 Views)
Background: The relationship between altitude and seed dormancy in high-mountain plants, particularly in Carum carvi L., reveals significant insights into how environmental conditions influence seed viability and germination. Objective: This research investigated the role of different C. carve habitats, with an emphasis on how altitude variations affect seed dormancy parameters. Methods: Three seed populations from altitudes of 650, 1200, and 2200 m a.s.l. were collected. Germination and viability tests, as well as analyses of biochemical parameters (primarily plant hormonal and antioxidant components), were carried out. Results:Seed germination rates were significantly lower at the highest altitude compared to lower elevations. This reduction was linked to enhanced seed dormancy, which correlated with elevated abscisic acid (ABA) concentrations, suggesting ABA's key role in altitude-dependent dormancy regulation. Concurrently, gibberellins (GAs) levels rose at higher altitudes, implying their contribution to improved germination traits and survival adaptation. Among endogenous compounds, xanthophylls (e.g., lutein, neoxanthin, violaxanthin, and antheraxanthin) exhibited a positive altitudinal trend, whereas α-tocopherol levels remained unchanged.Conclusion: These findings suggest that the lower temperatures and harsher conditions at higher altitudes significantly influence seed viability, germination, and dormancy. The physiological mechanisms, particularly the accumulation of ABA and the increase in xanthophylls, indicate an evolutionary adaptation that enhances survival under extreme environmental conditions. This adaptation is crucial for the persistence of high-mountain plant populations in Iran, where climatic challenges are pronounced.
Full-Text [PDF 761 kb]   (102 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2024/12/29 | Accepted: 2025/03/11 | Published: 2025/05/14

References
1. Hammami H, Saadatian B and Aliverdi A. Geographical variation in breaking the seed dormancy of Persian cumin (Carum carvi L.) ecotypes and their physiological responses to salinity and drought stresses. Industrial Crops and Products 2018; 124: 600-606. [DOI:10.1016/j.indcrop.2018.08.040]
2. Zhai B, Hu Z, Sun S, Tang Z and Wang G. Characteristics of photosynthetic rates in different vegetation types at high-altitude in mountainous regions. Sci. Total Environ. 2024; 907: 168071. [DOI:10.1016/j.scitotenv.2023.168071]
3. Morcia C, Tumino G, Ghizzoni R and Terzi V. Carvone (Mentha spicata L.) oils. Essential Oils in Food Preservation, Flavor and Safety. 2016; 309-316. [DOI:10.1016/B978-0-12-416641-7.00035-3]
4. Zehra M, Razaq A and Khan IA. Molecular analysis in medicinally important species Carum carvi and Bunium persicum (family Apiaceae) from district Astore. Pak. J. Bot. 2018; 50(1): 301-305.
5. Zakharova EA. Morphological evidence of polyphyletic nature of traditional Carum (Apiaceae-Apioideae). Plant Diversity and Evolution. 2010; 128(3): 409-21. [DOI:10.1127/1869-6155/2010/0128-0019]
6. Cabrera E, Hepp J, Gómez M and Contreras S. Seed dormancy of Nolana jaffuelii IM Johnst.(Solanaceae) in the coastal Atacama Desert. Flora. 2015; 214: 17-23. [DOI:10.1016/j.flora.2015.05.004]
7. Klupczyńska EA and Pawłowski TA. Regulation of seed dormancy and germination mechanisms in a changing environment. Int.J.Mol.Sci. 2021; 22(3): 1357. [DOI:10.3390/ijms22031357]
8. Koornneef M, Bentsink L and Hilhorst H. Seed dormancy and germination. Curr.Opin. Plant Biol. 2002; 5(1): 33-36. [DOI:10.1016/S1369-5266(01)00219-9]
9. Willis CG, Baskin CC, Baskin JM, Auld JR, Venable DL, Cavender‐Bares J, Donohue K, Rubio de Casas R and Group NGW. The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 2014; 203(1): 300-309. [DOI:10.1111/nph.12782]
10. Cotado A, Garcia MB and Munne-Bosch S. Physiological seed dormancy increases at high altitude in Pyrenean saxifrage (Saxifraga longifolia Lapeyr.). Environmental and Experimental Botany. 2020; 171: 103929. [DOI:10.1016/j.envexpbot.2019.103929]
11. Chen DL, Luo XP, Yuan Z, Bai MJ and Hu XW. Seed dormancy release of Halenia elliptica in response to stratification temperature, duration and soil moisture content. BMC Plant Biology. 2020; 20(352): 1-8. [DOI:10.1186/s12870-020-02560-8]
12. Salehani MK, Mahmoudi J, Mahdavi SK and Habibzadeh R. The effect of altitude on breaking seed dormancy and stimulation of seed germination of Persian hogweed (Heracleum persicum). Afr. J. Tradit. Complement. Altern. Med. 2013; 10(6): 555-558. [DOI:10.4314/ajtcam.v10i6.29]
13. Heilmeier H, Schulze E-D, Fan J and Hartung W. General relations of stomatal responses to xylem sap abscisic acid under stress in the rooting zone-A global perspective. Flora-Morphology, Distribution, Functional Ecology of Plants. 2007; 202(8): 624-636. [DOI:10.1016/j.flora.2007.06.002]
14. Rechinger KH. Flora Iranica. Graz-Austria: Akademic Druck-u; 1987.Vol. 162.
15. Pociecha E, Janeczko A, Dziurka M and Gruszka D. Disturbances in the biosynthesis or signalling of brassinosteroids that are caused by mutations in the HvDWARF, HvCPD and HvBRI1 genes increase the tolerance of barley to the deacclimation process. J. Plant Growth Regulation. 2020; 39: 1625-1637. [DOI:10.1007/s00344-020-10183-4]
16. Amaral JS, Casal S, Torres D, Seabra RM and Oliveira BP. Simultaneous determination of tocopherols and tocotrienols in hazelnuts by a normal phase liquid chromatographic method. Anal. Sci. 2005; 21(12): 1545-1548. [DOI:10.2116/analsci.21.1545]
17. Munné-Bosch S and Alegre L. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta. 2000; 210(6): 925-931. [DOI:10.1007/s004250050699]
18. Dostálek T, Rokaya MB and Münzbergová Z. Altitude, habitat type and herbivore damage interact in their effects on plant population dynamics. PLoS One. 2018; 13(12): e0209149. [DOI:10.1371/journal.pone.0209149]
19. Metz J, Liancourt P, Kigel J, Harel D, Sternberg M and Tielbörger K. Plant survival in relation to seed size along environmental gradients: A long‐term study from semi‐arid and Mediterranean annual plant communities. J. Ecol. 2010; 98(3): 697-704. [DOI:10.1111/j.1365-2745.2010.01652.x]
20. Shu K, Liu X-d, Xie Q and He Z-h. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant. 2016; 9(1): 34-45. [DOI:10.1016/j.molp.2015.08.010]
21. Finch‐Savage WE and Leubner‐Metzger G. Seed dormancy and the control of germination. New Phytologist. 2006; 171(3): 501-523. [DOI:10.1111/j.1469-8137.2006.01787.x]
22. Bewley JD. Seed germination and dormancy. The Plant Cell. 1997; 9(7): 1055-66. [DOI:10.1105/tpc.9.7.1055]
23. Sajeev N, Koornneef M and Bentsink L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. The Plant Cell. 2024; 36(5): 1358-1376. [DOI:10.1093/plcell/koad328]
24. Mafakheri M, Kordrostami M and Al-Khayri JM. Plant abiotic stress tolerance mechanisms. Nanobiotechnology: Mitigation of abiotic stress in plants. Springer. 2021, pp: 1-31. [DOI:10.1007/978-3-030-73606-4_1]
25. Tonguç M, Önder S, Gülcemal N and Tonguç F. Seed, germination, and seed-reserve traits differ along an altitudinal gradient. Journal of Forestry Research. 2022; 33(6): 1903-1912. [DOI:10.1007/s11676-022-01467-4]
26. Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci.Res. 2004; 14(2): 93-107. [DOI:10.1079/SSR2004159]
27. Kranner I and Birtić S. A modulating role for antioxidants in desiccation tolerance. Integr.Comp.Biol. 2005; 45(5): 734-740. [DOI:10.1093/icb/45.5.734]
28. Waterworth WM, Bray CM and West CE. The importance of safeguarding genome integrity in germination and seed longevity. Journal of Experimental Botany. 2015; 66(12): 3549-3558. [DOI:10.1093/jxb/erv080]
29. Bailly C and Kranner I. Analyses of reactive oxygen species and antioxidants in relation to seed longevity and germination. Methods Mol.Biol. 2011; 773: 343-367. [DOI:10.1007/978-1-61779-231-1_20]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb