year 19, Issue 75 (9-2020)                   J. Med. Plants 2020, 19(75): 55-64 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi M, Zarei M A. Molecular docking studies of some flavone analogues as α-Glucosidase inhibitors. J. Med. Plants 2020; 19 (75) :55-64
URL: http://jmp.ir/article-1-2438-en.html
1- Department of Biological Sciences, Faculty of Science, University of Kurdistan, Sanandaj, Iran
2- Department of Biological Sciences, Faculty of Science, University of Kurdistan, Sanandaj, Iran , mazarei@uok.ac.ir
Abstract:   (4100 Views)
Background: High Blood glucose levels is one of the main problems in diabetes. α-glucosidase with decomposition of polysaccharides increases the absorption of carbohydrates from the intestine, resulting in blood glucose upsurge. Inhibition of this enzyme is one of the most important strategies for treatment of diabetes. Objective: The aim of this study was to investigate in silico inhibitory effect of flavones, found in fruit and plants, on the α-glucosidase activity. Methods: This is a descriptive-analytic approach. The structure of the flavone compounds and α-glucosidase downloaded from PubChem and PDB database respectively. Then physicochemical properties of flavone compounds were predicted by the Zink data base and Swiss ADME server. Finally, Molegro Virtual Docker 6.0 and Molecular Viewer Molegro 2.5 environments were used, to do molecular interaction among flavone compounds and the enzyme. Results: Physicochemical characteristics of investigated flavone compounds were desirable. As well all of the studied flavone compounds were able to inhibit the α-glucosidase. But among the studied compounds, luteolin and nobiletin had the lowest negative energy with 78.98 and 87.96 KJ/mole respectively, and therefore the most docking points than the miglitol (positive control). Conclusion: Examined flavone compounds in this study, mainly nobiletin, are particularly suitable because of their fine placement in the active site of the enzyme. So they have more inhibitory effect than other similar compounds. As a result, after some in vitro and in vivo, complementary studies on this compound, it is possible to distinguish it as a potent pharmaceutical inhibitor of α- glucosidase, to be used in diabetes treatment.
Full-Text [PDF 746 kb]   (3030 Downloads)    
Type of Study: Research |
Received: 2019/01/26 | Accepted: 2019/06/16 | Published: 2020/09/6

References
1. Tundis R, Loizzo M and Menichini F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini. Rev. Med. Chem. 2010; 10(4): 315-31. [DOI:10.2174/138955710791331007]
2. Benalla W, Bellahcen S and Bnouham M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Curr. Diabetes Rev. 2010; 6(4): 247-54. [DOI:10.2174/157339910791658826]
3. Kim K, Nam K, Kurihara H and Kim S. Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 2008; 69(16): 2820-5. [DOI:10.1016/j.phytochem.2008.09.007]
4. Avery MA, Mizuno CS, Chittiboyina AG, Kurtz TW and Pershadsingh HA. Type 2 diabetes and oral antihyperglycemic drugs. Curr. Med. Chem. 2008; 15(1): 61-74. [DOI:10.2174/092986708783330656]
5. de Melo EB, da Silveira Gomes A and Carvalho I. α-and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 2006; 62(44): 10277-302. [DOI:10.1016/j.tet.2006.08.055]
6. Lawag IL, Aguinaldo AM, Naheed S and Mosihuzzaman M. α-Glucosidase inhibitory activity of selected Philippine plants. J. Ethnopharmacol. 2012; 144(1): 217-9 [DOI:10.1016/j.jep.2012.08.019]
7. Hung H-Y, Qian K, Morris-Natschke SL, Hsu CS and Lee KH. Recent discovery of plant-derived anti-diabetic natural products. Nat. Prod. Rep. 2012; 29(5): 580-606. [DOI:10.1039/c2np00074a]
8. Cazarolli LH, Zanatta L, Alberton EH, Figueiredo B, Reis MS, Folador P and Aguinaldo AM, Naheed S and Mosihuzzaman M. Flavonoids: prospective drug candidates. Mini. Rev. Med. Chem. 2008; 8(13): 1429-40. [DOI:10.2174/138955708786369564]
9. Cazarolli LH, Zanatta L, Alberton EH, Reis Bonorino Figueiredo MS, Folador P, Damazio RG, Naik MM, Ghadi SC and Tilve SG. Flavonoids: cellular and molecular mechanism of action in glucose homeostasis. Mini Reviews in Med. Chem. 2008; 8(10): 1032-8. [DOI:10.2174/138955708785740580]
10. Ninomiya M, Nishida K, Tanaka K, Watanabe K and Koketsu M. Structure-activity relationship studies of 5, 7-dihydroxyflavones as naturally occurring inhibitors of cell proliferation in human leukemia HL-60 cells. Journal of Natural Medicines 2013; 67(3): 460-7. [DOI:10.1007/s11418-012-0697-0]
11. Meena SN, Naik MM, Ghadi SC and Tilve SG. α-Glucosidase inhibition activity and in silico study of 2-(benzo [d][1, 3] dioxol-5-yl)-4H-chromen-4-one, a synthetic derivative of flavone. Bioorg. Med. Chem. 2019; 27(12): 2340-44. [DOI:10.1016/j.bmc.2018.12.021]
12. Cai Y, Luo Q, Sun M and Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004; 74(17): 2157-84. [DOI:10.1016/j.lfs.2003.09.047]
13. Seijas JA, Vázquez-Tato MP and Carballido-Reboredo R. Solvent-free synthesis of functionalized flavones under microwave irradiation. J. Org. Chem. 2005; 70(7): 2855-8. [DOI:10.1021/jo048685z]
14. Verma AK and Pratap R. Chemistry of biologically important flavones. Tetrahedron 2012; 68(41): 8523-38. [DOI:10.1016/j.tet.2012.06.097]
15. Braca A, Sortino C, Politi M, Morelli I and Mendez J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol. 2002; 79(3): 379-81. [DOI:10.1016/S0378-8741(01)00413-5]
16. Lefort ÉC and Blay J. Apigenin and its impact on gastrointestinal cancers. Mol. Nutr. Food Res. 2013; 57(1):126-44. [DOI:10.1002/mnfr.201200424]
17. Patel D, Shukla S and Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise. Int. J. Oncol. 2007; 30(1): 233-45. [DOI:10.3892/ijo.30.1.233]
18. Wang C-Z, Calway TD, Wen X-D, Smith J, Yu C, Wang Y and Lu W, Lu M and Zhang J. Hydrophobic flavonoids from Scutellaria baicalensis induce colorectal cancer cell apoptosis through a mitochondrial-mediated pathway. Int. J. Oncol. 2013; 42(3): 1018-26. [DOI:10.3892/ijo.2013.1777]
19. Wu B, Li J, Huang D, Wang W, Chen Y, Liao Y, Luo Q, Sun M and Corke H. Baicalein mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells. Bmc Cancer 2011; 11(1): 527. [DOI:10.1186/1471-2407-11-527]
20. Pichichero E, Cicconi R, Mattei M, Muzi MG and Canini A. Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression. Int. J. Oncol. 2010; 37(4): 973-81. [DOI:10.3892/ijo_00000748]
21. Cai X, Ye T, Liu C, Lu W, Lu M, Zhang J. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxico in Vitro. 2011; 25(7):1385-91. [DOI:10.1016/j.tiv.2011.05.009]
22. Seelinger G, Merfort I, Wölfle U and Schempp C. Anti-carcinogenic effects of the flavonoid luteolin. Molecules 2008; 13(10): 2628-51. [DOI:10.3390/molecules13102628]
23. Yoshimizu N, Otani Y, Saikawa Y, Kubota T, Yoshida M, Furukawa T, Young L and Marrero E. Anti‐tumour effects of nobiletin, a citrus flavonoid, on gastric cancer include: antiproliferative effects, induction of apoptosis and cell cycle deregulation. Aliment Pharmacol Ther. 2004; 20: 95-101. [DOI:10.1111/j.1365-2036.2004.02082.x]
24. Hirano T, Abe K, Gotoh M and Oka K. Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes. Br. J. Cancer. 1995; 72(6): 1380. [DOI:10.1038/bjc.1995.518]
25. Parajuli P, Joshee N, Rimando AM, Mittal S and Yadav AK. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med. 2009; 75(1): 41. [DOI:10.1055/s-0028-1088364]
26. Baumann S, Fas SC, Giaisi M, Müller WW, Merling A, Gülow K Vázquez-Tato MP and Carballido-Reboredo R. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCγ1-and Ca2+-dependent apoptosis. Blood 2008; 111(4): 2354-63. [DOI:10.1182/blood-2007-06-096198]
27. Zhang M, Liu L-P, Chen Y, Tian X-y, Qin J, Wang D, Lin SH, Chia YC and Weng CF. Wogonin induces apoptosis in RPMI 8226, a human myeloma cell line, by downregulating phospho-Akt and overexpressing Bax. Life Sciences 2013; 92(1): 55-62. [DOI:10.1016/j.lfs.2012.10.023]
28. Huang S-Y and Zou X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 2010; 11(8): 3016-34. [DOI:10.3390/ijms11083016]
29. Wadood A, Ahmed N, Shah L, Ahmad A, Hassan H and Shams S. In-silico drug design: An approach which revolutionarised the drug discovery process. OA Drug Design & Delivery 2013; 1(1): 3-7. [DOI:10.13172/2054-4057-1-1-1119]
30. Thomsen R and Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 2006; 49(11): 3315-21. [DOI:10.1021/jm051197e]
31. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods. 2000; 44(1): 235-49. [DOI:10.1016/S1056-8719(00)00107-6]
32. Li YQ, Zhou FC, Gao F, Bian JS and Shan F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J. Agric. Food Chem. 2009; 57(24): 11463-8. [DOI:10.1021/jf903083h]
33. Semaan D, Igoli J, Young L, Marrero E, Gray A and Rowan E. In vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw. on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes. J. Ethnopharmacol. 2017; 203: 39-46. [DOI:10.1016/j.jep.2017.03.023]
34. Lee Y, Kim S, Kim JY, Arooj M, Kim S, Hwang S Chen Y and Tian X-y. Binding mode analyses and pharmacophore model development for stilbene derivatives as a novel and competitive class of α-glucosidase inhibitors. PloS One. 2014; 9(1): e85827. [DOI:10.1371/journal.pone.0085827]
35. Voordeckers K, Brown CA, Vanneste K, van der Zande E, Voet A, Maere S, Ghadi SC and Tilve SG. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol. 2012; 10(12): e1001446. [DOI:10.1371/journal.pbio.1001446]
36. Ma H, Wang L, Niesen DB, Cai A, Cho BP, Tan W, Cai Y and Luo Q. Structure activity related, mechanistic, and modeling studies of gallotannins containing a glucitol-core and α-glucosidase. RSC Advances 2015; 5(130): 107904-15. [DOI:10.1039/C5RA19014B]
37. Jhong CH, Riyaphan J, Lin SH, Chia YC and Weng CF. Screening alpha‐glucosidase and alpha‐amylase inhibitors from natural compounds by molecular docking in silico. BioFactors 2015; 41(4): 242-51. [DOI:10.1002/biof.1219]
38. Muller CJ, Malherbe CJ, Chellan N, Yagasaki K, Miura Y and Joubert E. Potential of rooibos, its major C-glucosyl flavonoids, and Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid in prevention of metabolic syndrome. Crit. Rev. Food Sci. Nutr. 2018; 58(2): 227-46. [DOI:10.1080/10408398.2016.1157568]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb