year 18, Issue 70 (5-2019)                   J. Med. Plants 2019, 18(70): 21-44 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Navasi F, Naghdi Badi H, Mehrafarin A, Rezazadeh S, Mustafavi S, Ghorbanpour M. A Comprehensive Overview on Valuable Tropane Alkaloids: Scopolamine, Atropine, and Hyoscyamine. J. Med. Plants. 2019; 18 (70) :21-44
1- Department of Horticulture, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran, Department of Horticulture, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
2- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
3- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran ,
4- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran., Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran.
Abstract:   (1490 Views)
Tropane alkaloids such as scopolamine (C17H21NO4), atropine (C17H23NO3) and hyoscyamine (C17H23NO3) are the most important plant secondary metabolites in the pharmaceutical industry due to anticholinergic activity, competition with muscarinic receptors and also treating different human diseases. Scopolamine, hyoscyamine and atropine are the most important tropane alkaloids used as anticoagulants and spasmolytic drugs in the digestive system and urinary excretion. Tropane alkaloids are natural phytochemical compounds, which are present in different plant families. These compounds are the main secondary metabolites in Solanaceae family plants such as Hyoscyamus niger and Atropa belladonna. The main source of raw material for the production of tropane alkaloids in the world is Duboisia spp. leaves which contain 2-4% alkaloids (more than 60% scopolamine, and 30% hyoscyamine). Common methods of analysis of tropane alkaloids include gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE), in which liquid chromatography is mostly adopted. Various enzymes involved in the biosynthesis of tropane alkaloids, in which N- Putrescine methyltransferase (PMT), tropinone reductase I and II, and hyoscyamine 6-beta-hydroxylase (H6H) have a key role. To increase the biosynthesis of these important alkaloids, many studies were focused on the manipulation of key genes expressing enzymes in the biosynthesis pathway such as pmt and h6h genes. Although many biotechnological and agronomic studies have been done to increase the biosynthesis efficiency of these metabolites, further investigations are necessary. This paper is intended to provide a comprehensive overview of these tropane alkaloids.
Full-Text [PDF 1124 kb]   (839 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2018/11/6 | Accepted: 2019/01/7 | Published: 2019/05/26
* Corresponding Author Address: Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran

1. Kukula-Koch WA and Widelski. J. Alkaloids. In: Simone Badal and Rupika Delgoda, pharmacognosy: Fundamentals, Applications and Strategies. Academic Press. 2017, pp: 163-98. [DOI:10.1016/B978-0-12-802104-0.00009-3]
2. Dewick PM. Medicinal natural products. A biosynthetic approach. 3rd ed. The Atrium, United Kingdom: John Wiley & Sons Ltd. 2009, pp: 311-481.
3. Aniszewski T. Alkaloidssecrets of life. Alkaloid chemistry, biological significance, applications and ecological role, vol. 56, 710. The Netherlands: Elsevier B.V. 2007, pp: 182-9.
4. Lounasmaa M and Tamminen T. The tropane alkaloids. In: Cordell GA. (eds.). The Alkaloids. Academic, New York. 1993, 44, pp: 1-114. [DOI:10.1016/S0099-9598(08)60143-1]
5. O'Leary ME, Hancox JC. Role of voltage-gated sodium, potassium and calcium channels in the development of cocaine-associated cardiac arrhythmias. Br. J. Clin Pharmacology. 2010; 69 (5): 427-42. [DOI:10.1111/j.1365-2125.2010.03629.x]
6. Keil M Fine chemicals from plants. In: Oksman-Caldentey KM, Barz WH (eds) Plant Biotechnology and Transgenic Plants, Marcel Dekker, Inc., NY. 2002, pp: 347-72. [DOI:10.1201/9780203910849.ch15]
7. Chevallier, MA. The encyclopedia of medicinal plants; Dorling kindersly. 1996, pp: 336.
8. Brown JH., Taylor P.Muscarinic receptor agonists and antagonists. In: Hardman, J.G., et al. (Eds.), The Pharmacological Basis of Therapeutics. McGraw-Hill, New York. 1996, pp: 141-60.
9. Kitagawa I, Ishizu T, Ohashi K, Shibuya H. Chirality of natural products: hyoscyamine and scopolamine. Yakugaku Zasshi. 2000; 120: 1017-23. [DOI:10.1248/yakushi1947.120.10_1017]
10. Budavari S, Windholz M. Hyoscamine. In: The merck index: An encyclopedia of chemicals, drugs, and biologicals, 12th edn. Merck. 1996, pp: 148-9.
11. O'Neil MJ. The merck index - An encyclopedia of chemicals, drugs, and biologicals. whitehouse station, NJ: Merck and Co., Inc. 2006, p. 1450.
12. Lide DR. Handbook of Chemistry and Physics. CRC Press, Taylor & Francis, Boca Raton, FL. 2007, p. 3-458.
13. Budavari S, Windholz M. Atropine. In the merck index: An encyclopedia of chemicals, Drugs, and Biologicals, 12th edn. Merck. 1996, pp: 148-9.
14. The Merck Index. 9th ed. Rahway, New Jersey: Merck & Co., Inc. 1976, p: 647.
15. Lide, DR. Handbook of Chemistry and Physics. 81st Edition. CRC Press LLC, Boca Raton: FL. 2000, p: 3-27.
16. Weast RC. Handbook of Chemistry and Physics. 60th ed. Boca Raton, Florida: CRC Press Inc. 1979, p: C-346.
17. Sunshine I. Handbook of Analytical Toxicology. Cleveland: The Chemical Rubber Co., 1969, p: C-13.
18. Trissel LA. Handbook on Injectable Drugs. 9th ed. Bethesda, MD. American Society of Health-System Pharmacists' Product Development. 1996, p: 109.
19. Lewis RJ. Sax's Dangerous Properties of Industrial Materials. 9th ed. Volumes 1-3. New York, NY: Van Nostrand Reinhold. 1996, p: 289.
20. Parfitt K. Martindale: The complete drug reference, 32nd ed. The Pharmaceutical Press London 1999, p: 455-7.
21. Dei S, Bartolini A, Bellucci C, Ghelardini C, Gualtieri F, Manetti D, Romanelli MN. Scapecchi S, Teorodi E. Differential analgesic activity of the enantiomers of atropine derivatives does not correlate with their muscarinic subtype selectivity. Eur. J. Med. Chem. 1997; 32: 595-605. [DOI:10.1016/S0223-5234(97)83285-0]
22. Osol, A. (ed.). Remington's Pharmaceutical Sciences. 16th ed. Easton, Pennsylvania: Mack Publishing Co. 1980, p: 856.
23. Griffin WJ, Lin GD. Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochem. 2000; 53: 623-37. [DOI:10.1016/S0031-9422(99)00475-6]
24. Ghorbanpour M, Salehi Arjmand H, Hatami M, Hosseini N. Evaluation of morphological and tropane alkaloids variability in some populations of Hyosscyamus niger L. JMP. 2018; 17 (2): 105-24.
25. El Bazaoui A, Bellimam MA, Soulaymani A. Nine new tropane alkaloids from Datura stramonium L. identified by GC/MS. Fitoterapia. 2011; 193-7. doi:10.1016/j.fitote.2010.09.010. [DOI:10.1016/j.fitote.2010.09.010]
26. Ionkova I, Witte L, Alfermann HA. Spectrum of tropane alkaloids in transformed roots of Datura quercifolia and Hyoscyamus gyorffyi cultivated in vitro. Planta Med. 1994; 60: 382-4. [DOI:10.1055/s-2006-959509]
27. Vitale AA, Archer A, Pomilio AB.Alkaloids of Datura ferox from Argentina. J. Ethnopharmacol. 1995; 49: 81-9. [DOI:10.1016/0378-8741(95)90035-7]
28. Evans WC, Somanabandhu, A. Alkaloids of Datura discolor. Phytochem. 1974; 13:304-305. [DOI:10.1016/S0031-9422(00)91329-3]
29. Evans W. C. and Wellendorf M. The alkaloids of the roots of datura. J. Chem. Soc., 1959; 0: 1406-9. [DOI:10.1039/jr9590001406]
30. Strahil Berkov, Rawia Zayed, Tsvetelina Doncheva. Alkaloid patterns in some varieties of Datura kymatocarpa. Fitoterapia 2006; 77: 179-82. [DOI:10.1016/j.fitote.2006.01.002]
31. Evans WC and Major VA. The alkaloids of the genus Datura. Part V. Alkaloids of Datura sanguinea R. and P. and related esters of tropane-3a. J. Chem. Soc (C). 1968; 22: 2775-8. [DOI:10.1039/J39680002775]
32. Kariñho-Betancourt A, Agrawal AA, Halitschke R, Núñez-Farfán J. Phylogenetic correlations among chemical and physical plant defenses change with ontogeny. New Phytol. 2014; 206: 796-806. [DOI:10.1111/nph.13300]
33. Rätsch C. The Encyclopedia of Psychoactive Plants: Ethnopharmacology and its applications. Park Street Press, Rochester, USA. 1998.
34. Bye R, Mata R, Pimentel J. Botany, ethnobotany and chemistry of Datura lanosa (Solanaceae) in Mexico. Anales del Instituto de Biologia de la Universidad Nacional Autónoma de México, Serie Botánica 1991; 61: 21-42.
35. Lindequist UDatura. In: Hagers handbuch der pharmazeuti-schen Praxis, 5th edn. Springer, Berlin. 1992, pp: 1138-54.
36. Parr J, Payne J, Eagles J, Champan BT, Robins RJ, Rhodes MJC. Variation in tropane alkaloids accumulation within the Solanaceae and strategies for its exploitation. Phytochem. 1990; 29: 2545-50. [DOI:10.1016/0031-9422(90)85185-I]
37. Samanani N, and Facchini P J. Compartmentalization of plant secondary metabolism. Recent Advances in Phytochemistry. 2006; 40: 53-83. [DOI:10.1016/S0079-9920(06)80037-7]
38. Zhang L. Ding, R, Chai Y, Bonfill M, Moyano E, Oksman-Kaldenty K.M, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang, K. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. 2004; 101: 6786-91. [DOI:10.1073/pnas.0401391101]
39. Kutchan TM, Frick S, Weid M. Engineering plant alkaloid biosynthetic pathways: progress and prospects. Adv. Plant Biochem. Mol. Biol. 2008; 1: 283-310. [DOI:10.1016/S1755-0408(07)01010-7]
40. Ziegler J, Facchini, PJ. Alkaloid biosynthesis: Metabolism and trafficking. Annu. Rev. Plant Biol. 2008; 59: 735-69. [DOI:10.1146/annurev.arplant.59.032607.092730]
41. Samuelsson G. Drugs of natural origin: A Textbook of pharmacognosy. Swedish Pharmaceutical Press, Stockholm. 2001.
42. Ghorbanpour M, Majnoun Hoseini N, Rezazadeh Sh, Omidi M, Khavazi K, Hatami M. Variations of root and shoot tropane alkaloids production of Hyoscyamus niger under two rhizobacteria strains inoculation and water deficit stress. JMP. 2011; 10 (40): 160-70.
43. Ghorbanpour M, Khavazi K, Ghafarzadegan R, Hatami M. Two main tropane alkaloids variations of black henbane (Hyoscyamus niger) under PGPRs inoculation and water deficit stress induction at flowering stage. JMP. 2013; 12 (45): 29-42.
44. Aigner TG, Mishkin M. The effects of physostigmine and scopolamine on recognition memory in monkeys. Behav Neural Biol. 1986; 45: 81-7. [DOI:10.1016/S0163-1047(86)80008-5]
45. Spinks A. and Wasiak J. Scopolamine (hyoscine) for preventing and treating motion sickness. Cochrane database Syst. Rev. DOI: 10.1002/14651858 (2011). [DOI:10.1002/14651858]
46. Shiraishi K and Takayanagi I. Subtype of muscarinic receptors mediating relaxation and contraction in the rat iris dilator smooth muscle. Gen. Pharmacol. 1993; 24 (1): 139 - 42. [DOI:10.1016/0306-3623(93)90024-R]
47. Jones DNC and Higgins GA. Effect of scopolamine on visual attention in rats. Psychopharmacol. 1995; 120: 142-9. [DOI:10.1007/BF02246186]
48. Tobin G, Giglio D. and Gotrick, B. Studies of muscarinic receptor subtypes in salivary gland function in anaesthetized rats. Autonomic Neuroscience: Basic and Clinical. 2002; 100: 1-9. [DOI:10.1016/S1566-0702(02)00139-X]
49. Eglen RM, Hedge SS. andWatson N. Muscarinic receptor subtypes and smooth muscle function. Pharmacol. Rev. 1996; 48 (4): 531-65.
50. Chintoh A, Fulton J, Koziel N, Aziz M, Sud M. and Yeomans JS. Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M. Pharmacol. Biochem. Behav. 2003; 76: 53-61. [DOI:10.1016/S0091-3057(03)00196-5]
51. Dai Y, Ambudkar IS, Horn VJ, Yeh C, Kousvelari EE, Wall SJ, Li M, Yasuda RP, Wolfe BB and Baum BJ. Evidence that M3 muscarinic receptors in rat parotid gland couple to two second messenger systems. Am. J. Physiol. 1991; 261: 1063-73. [DOI:10.1152/ajpcell.1991.261.6.C1063]
52. McGaughy J, Everitt BJ, Robbins TW and Sarter, M., The role of cortical cholinergic afferent projections in cognition: impact of new selective immunotoxins. Behav. Brain. Res. 2000; 115: 251-63. [DOI:10.1016/S0166-4328(00)00262-X]
53. DeFrates LJ, Hoehns JD, Sakornbut EL, Glascock DG, Tew AR. Antimuscarinic intoxication resulting from ingestion of moonflower seeds. Ann. Pharmacother. 2004; 39: 173-6. [DOI:10.1345/aph.1D536]
54. Bruce N. Alkaloids. In: Rehm HJ. Reed G. and Bruce NC. (Eds.), Biotechnology Set. Wiley, Cambridge, UK. 2008, pp: 332-50.
55. Guggisberg G. and Hesse, M. The alkaloids: chemistry and pharmacology. Academic, New York. 1983, 22: 85-188. [DOI:10.1016/S0099-9598(08)60178-9]
56. Ghelardini C.Galeotti N. Gualtieri F. Bellucci C. and Bartolini A. Memory facilitation with atropine: A paradoxical effect. Phytotherapy Res. 1998; 12: 7-9.;2-R [DOI:10.1002/(SICI)1099-1573(1998)12:1+3.0.CO;2-R]
57. Lopez-Enriquez E, Raphael Morales A, and Robert F.Effect of atropine sulfate in pulmonary hypertrophic osteoarthropathy. Arthritis Rheum. 1980; 23: 7. [DOI:10.1002/art.1780230708]
58. Clement JG and Lee MJ. Pharmacokinetics of the acetylcholinesterase oxime reactivator, HI-6, in rhesus monkeys (Macaca mulatta): Effect of atropine, diazepam, and methoxyflurane anesthesia. Biopharm. Drug Dispos. 1990; 11: 227-32. [DOI:10.1002/bdd.2510110307]
59. Blozovski D and Bachevalier J. Effect of atropine on behavioral arousal in the developing rat. Dev. Psychol. 1975; 8 (2): 97-102. [DOI:10.1002/dev.420080202]
60. Li S, Topchiy I, and Kocsis B. The effect of atropine administered in the medial septum or hippocampus on high- and low-frequency theta rhythms in the hippocampus of urethane anesthetized rats. Synapse 2007; 61: 412-9. [DOI:10.1002/syn.20388]
61. Wilson LM and Ricci DC. Scopolamine's effect on passive avoidance behavior in immature rats. Dev. Psychobiol. 1976; 9 (3): 245-4. [DOI:10.1002/dev.420090308]
62. David M. Warburton. Commentary on: Effects of scopolamine and nicotine on human rapid information processing performance. Psychopharmacology 1984; 82: 147-50. [DOI:10.1007/BF00427761]
63. Poorheidari G, Pratt JA and Dehghan N. Effects of low-dose scopolamine on locomotor activity: No dissociation between cognitive and non-effects. Neurosci. Res. Comuni. 31 (3): 1520-6769. [DOI:10.1002/nrc.10049]
64. Firth AY and Walker K. Visual side-effects from transdermal scopolamine (hyoscine). Dev. Med. Child. Neurol. 2006; 48: 137-8. [DOI:10.1017/S0012162206000296]
65. Vesalainen RK, Tahvanainen KUO, Kaila TJ, Kantola IM, Kuusela TA and Eckberg DL. Effects of low-dose transdermal scopolamine on autonomic cardiovascular control in healthy young subjects. Clin. Physiol. 1997; 17: 135 - 48. [DOI:10.1046/j.1365-2281.1997.t01-1-02020.x]
66. Ricng J, Gualtierib F and Tucek S. Constitutive inhibitory action of muscarinic receptors on adenylate cyclase in cardiac membranes: effects of atropine, S-(−)-hyoscyamine, and R-(+)-hyoscyamine. 5th International Symposium on Cholinergic Mechanisms. 1998. [DOI:10.1016/S0928-4257(99)80099-0]
67. Rozear M. Bircher RP. Chai CY. Wang SC. Effects of intracerebroventricular L-hyoscyamine, ethybenztropine and procaine on cardiac arrhythmias induced in dogs by pentylenetetrazol, picrotoxin or deslanoside. hat. J. Neurophurmucol. 1968; 7: 1-6. [DOI:10.1016/0028-3908(68)90048-8]
68. Kim N, Estrada O, Chavez B, Stewart C and D'Auria JC. Tropane and granatane alkaloid biosynthesis: A systematic analysis. Molecules. 2016; 21: 1510; [DOI:10.3390/molecules21111510]
69. Hibi N, Fujita T, Hatano M, Hashimoto T and Yamada Y. Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus: n-Butylamine as a potent inhibitor of the transferase both in vitro and in vivo. Plant Physiol. 1992; 100: 826. [DOI:10.1104/pp.100.2.826]
70. Stenzel O, Teuber M and Drager B. Putrescine N-methyltransferase in Solanum tuberosum L., a calystegine-forming plant. Planta. 2006; 223: 200. [DOI:10.1007/s00425-005-0077-z]
71. Scholl Y, Hoke D and Drager B. Calystegines in calystegia sepium derived from the tropane alkaloid pathway. Phytochem. 2001; 58: 883. [DOI:10.1016/S0031-9422(01)00362-4]
72. Scholl Y. Schneider B. and Drager B. Biosynthesis of calystegines: 15N NMR and kinetics of formation in root cultures of Calystegia sepium. Phytochem. 2003; 62: 325. [DOI:10.1016/S0031-9422(02)00544-7]
73. Sato F. Takeshita N. Fitchen JH. Fujiwara H. and Yamada Y. Metabolic engineering of plant alkaloid biosynthesis. Phytochem. 2001; 98 (1): 367-72. [DOI:10.1073/pnas.98.1.367]
74. Duran-Patron R. Hagan DO. Hamilton JT. and Wong CW. Biosynthetic studies on the tropane ring system of the tropane alkaloids from Datura stramonium. Phytochem. 2000; 53: 777. [DOI:10.1016/S0031-9422(00)00022-4]
75. Lanoue A, Boitel-Conti M, Portais JC, Laberche JC, Barbotin JN, Christen P and Sangwan-Norreel B. Kinetic study of littorine rearrangement in Datura innoxia hairy roots by (13) C NMR spectroscopy. J. Nat. Prod. 2002; 65: 1131. [DOI:10.1021/np010612c]
76. Eich E. Ornithine-Derived Alkaloids. In: Eich E. (Eds.) Solanaceae and Convolvulaceae: Secondary Metabolites. Springer-Verlag Berlin Heidelberg. 2008, pp: 33-212. [DOI:10.1007/978-3-540-74541-9_3]
77. Matsuda J, Okabe S, Hashimoto T and Yamada Y. Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J. Biol. Chem. 1991; 266: 9460-4.
78. Suzuki K, Yun DJ, Chen XY, Yamada Y and Hashimoto T. An Atropa belladonna hyoscyamine 6beta-hydroxylase gene is differentially expressed in the root pericycle and anthers. Plant Mol. Biol. 1999; 40: 141. [DOI:10.1093/oxfordjournals.pcp.a029540]
79. Hashimoto T, Hayashi A, Amano Y, Kohno J, Iwanari H, Usuda S and Yamada Y. Hyoscyamine 6 beta-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J. Biol. Chem. 1991; 266: 4648.
80. Ahmad A, and Leete E. Biosynthesis of tropine moiety of hyoscyamine from δ-Nmethylornithine. Phytochem. 1970; 9: 2345-7. [DOI:10.1016/S0031-9422(00)85738-6]
81. Humphrey AJ and O'Hagan D. Tropane alkaloid biosynthesis. A century old problem unresolved. Nat. Prod. Rep. 2001; 18: 494-502. [DOI:10.1039/b001713m]
82. Dräger B. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 2006; 67: 327-37. [DOI:10.1016/j.phytochem.2005.12.001]
83. Portsteffen A, Dräger B.and Nahrstedt A. The reduction of tropinone in Datura stramonium root cultures by two specific reductases. Phytochem. 1994; 37: 391-400. [DOI:10.1016/0031-9422(94)85066-6]
84. Hashimoto T and Yamada Y. Alkaloid biogenesis: Molecular aspects. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994; 45: 257-85. [DOI:10.1146/annurev.pp.45.060194.001353]
85. Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X and Tang K. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. PNAS. 2004; 1001: 6786-91. [DOI:10.1073/pnas.0401391101]
86. Sato F, Hashimoto T, Hachiya A, Tamura K, Choi K, Morishige T, Fujimoto H and Yamada Y. Metabolic engineering of plant alkaloid biosynthesis. PNAS. 2001; 98: 367-72. [DOI:10.1073/pnas.98.1.367]
87. Moyano E, Fornalé S, Palazón J, Cusidó R.M, Bagni N and Piñol M.T. Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 2002; 59: 697-702. [DOI:10.1016/S0031-9422(02)00044-4]
88. Moyano E, Jouhikainen K, Tammela P, Palazón J, Cusido RM, Piñol MT, Teeri TH and Oksman-Caldentey KM. Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J. Exp. Bot. 2003; 54: 203- 11. [DOI:10.1093/jxb/erg014]
89. Rothe G, Drager B. Tropane alkaloids-metabolic response to carbohydrate signal in root cultures of Atropa belladonna. Plant Sci. 2002; 163: 979-85. ttps://
90. Jouhikainen K. Lindgren L, Jokelainen T, Hiltunen R, Teeri TH. and Oksman-Caldentey KM. Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta. 1999; 208: 545-51. [DOI:10.1007/s004250050592]
91. PalazónJ. Moyano E. Cusido RM. Bonfill M. Oksman-Caldentey KM. and Piñol MT. Alkaloid production in Duboisia hybrid hairy roots and plants overexpresing the h6h gene. Plant Sci. 2003, 165: 1289-95. [DOI:10.1016/S0168-9452(03)00340-6]
92. Aehle E. and Draeger B. Tropane alkaloid analysis by chromatographic and electrophoretic techniques: an update. J Chromatogr B. 2010; 1391-406. [DOI:10.1016/j.jchromb.2010.03.007]
93. Bieri S, Brachet A, Veuthey J-L, and Christen P. Cocaine distribution in wild Erythroxylum species. J Ethnopharmacol. 2006; 439-47. [DOI:10.1016/j.jep.2005.08.021]
94. Kaufmann B, and Christen P.Recent extraction techniques for natural products: microwave-assisted extraction and pressurized solvent extraction. Phytochem Anal. 2002; 105-13. [DOI:10.1002/pca.631]
95. Brachet A, Rudaz S, Mateus L, Christen P, and Veuthey J-L Optimization of accelerated solvent extraction of cocaine and benzoylecgonine from Coca leaves. J Sep Sci. 2001; 865-73.<865::AID-JSSC865>3.0.CO;2-U [DOI:10.1002/1615-9314(20011101)24:10/113.0.CO;2-U]
96. Choi YH, Chin Y-W, Kim J, Jeon SH.and Yoo K-P. Strategies for supercritical fluid extraction of hyoscyamine and scopolamine salts using basified modifiers. J Chromatogr, A. 1999; 47-55. [DOI:10.1016/S0021-9673(99)00962-0]
97. Brachet A, Christen P, Gauvrit JY, Longeray R, Lanteri P.and Veuthey JL. Experimental design in supercritical fluid extraction of cocaine from coca leaves. J Biochem Biophys Methods. 2000; 353-66. [DOI:10.1016/S0165-022X(00)00062-2]
98. Brachet A, Mateus L, Cherkaoui S, Christen P, Gauvrit JY, Lanteri P. and Veuthey JL. Application of central composite designs in the supercritical fluid extraction of tropane alkaloids in plant extracts. Analysis. 1999; 772-8. [DOI:10.1051/analusis:1999143]
99. Leicach SR, Chludil HD. and Yaber GMA. Chromatography and spectroscopy of alkaloids. Science Publishers, Enfield, NH, USA. 2009; 175-201. [DOI:10.1201/b10195-10]
100. Cardillo AB, Talou JR, and Giulietti AM.Expression of Brugmansia candida Hyoscyamine 6beta-Hydroxylase gene in Saccharomyces cerevisiae and its potential use as biocatalyst. Microb Cell Fact: 2008; 7: 17. [DOI:10.1186/1475-2859-7-17]
101. Andreola B, Piovan A, Da DL, Filippini R. and Cappelletti E.Unilateral mydriasis due to Angel's trumpet. Clin Toxicol. 2008; 329-31. [DOI:10.1080/15563650701378720]
102. Pramod KK, Singh S, and Jayabaskaran C. Expression of hyoscyamine 6b-hydroxylase in the root pericycle cells and accumulation of its product scopolamine in leaf and stem tissues of Datura metel L. Plant Sci. 2009; 178, 202-6. [DOI:10.1016/j.plantsci.2009.11.004]
103. Hosseini N, Ebrahimi SN, Salehi P, Asghari B. and Ahmadi M Simultaneous determination of atropine and scopolamine in different parts of Hyoscyamus arachnoideus Pojark plants by high-performance liquid chromatography (HPLC). J Med Plants Res. 2011; 5: 3552-57.
104. Ibrahim AI, Abd EKM, Nower A, Abdel MA, and Abd EAA.Alkaloid production and organogenesis from callus of Hyoscyamus muticus L. in vitro. J Appl Sci Res. 2009; 5: 82-92.
105. Bahmanzadegan A, Sefidkon F.and Sonboli A. Determination of hyoscyamine and scopolamine in four Hyoscyamus species from Iran. Iran J Pharm Res. 2009; 8 (1): 65-70.
106. Aehle E, and Dräger B. Tropane alkaloid analysis by chromatographic and electrophoretic techniques: An update. J. Chromatography B. 2010; 878 (17-18): 1391-406. [DOI:10.1016/j.jchromb.2010.03.007]
107. Muzquiz M. Separation of alkaloids by gas chromatography. In: Wilson ID, Adlard ER, Cooke M, Poole CF (eds) Encyclopedia of separation science. Academic, San Diege. 2000, pp: 1938-49. [DOI:10.1016/B0-12-226770-2/02561-8]
108. Namera A, Yashiki M, Hirose Y, Yamaji S, Tani T, Kojima T. 2002. Quantitative analysis of tropane alkaloids in biological materials by gas chromatography-mass spectrometry. Forensic Sci Int.; 130: 34-43. [DOI:10.1016/S0379-0738(02)00302-X]
109. Hartmann T, Witte L, Oprach F, Toppel G. Reinvestigation of the alkaloid composition of Atropa belladonna plants, root cultures, and cell suspension cultures. Planta Med. 1986; 390-5. [DOI:10.1055/s-2007-969194]
110. Altria K, Marsh A, and Sanger-van GC. Capillary electrophoresis for the analysis of small-molecule pharmaceuticals. Electrophoresis. 2006; 27, 2263-82. [DOI:10.1002/elps.200600030]
111. Ganzera M. Quality control of herbal medicines by capillary electrophoresis: potential, requirements and applications. Electrophoresis. 2008; 29: 3489-503. [DOI:10.1002/elps.200700901]
112. Cucinotta V, Contino A, Giuffrida A, Maccarrone G, and Messina M. Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis. J Chromatogr A. 2010; 1217 (7): 953-67. [DOI:10.1016/j.chroma.2009.11.094]
113. Ren X, Ma Y, Zhou M, Huo S, Yao J, and Chen H. Determination of tropane alkaloid components in Przewalskia tangutica Maxim. by capillary electrophoresis with electrochemiluminescence detection. Se Pu. 2008; 26: 223-7. [DOI:10.1016/S1872-2059(08)60015-2]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2020 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb