year 22, Issue 87 (12-2023)                   J. Med. Plants 2023, 22(87): 77-88 | Back to browse issues page

XML Persian Abstract Print

1- Department of Range and Watershed Management (Nature Engineering), Faculty of Agriculture, Fasa University, Fasa, Iran ,
2- Department of Agriculture, Payame Noor University, Tehran, Iran
Abstract:   (131 Views)
Background: In sustainable agriculture, reduction of chemical fertilizers- induced environmental pollutions is mainly considered. Therefore, recently application of organic fertilizers particularly their foliar applications received increased attention. Besides, herbal medicine with higher antioxidant activity will be able to limit the formation of free radical species. Objective: Therefore, we aimed to determine the effect of foliar application of organic fertilizers on antioxidant activity and polyphenolic compounds of Marrubium vulgare L. in greenhouse experiment. Methods: In a completely randomized design experiment with three replications that was carried out in 2019, the applied treatments consisted of four levels (0, 250, 500, and 1000 mg L-1) of foliar application of humic and fulvic acids (0, 250, 500, and 1000 mg L-1). Some phenolic compounds including gallic acid, chloregenic acid, coumarin, hesperidin, and eugenol were detected and quantified in the Marrubium vulgare L. extracts. Results: Application of 250 mg humic acid L-1 resulted in the highest extraction of phenolic compounds, coumarin, reducing this content at a higher applied level and by fulvic acid addition. As such, the foliar application of low concentrations of humic acid before the flowering stage was a useful and effective method to increase the synthesis of phenolic compounds. Among the studied organic acids, the application of 250 mg humic acid L-1 showed the highest antioxidant activities. These compounds can be effective in controlling diseases with free radicals. Conclusion: Based on the findings of the present research, a more appropriate management of the growth and propagation of medicinal plants and their quality can be applied. In addition, humic substances application reduces the chemical fertilizers used, thereby maintaining the environment.
Full-Text [PDF 544 kb]   (92 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2023/08/20 | Accepted: 2023/12/13 | Published: 2023/12/31

1. Meyre-Silva C and Cechinel-Filho V. A review of the chemical and pharmacological aspects of the genus marrubium. Curr. Pharm. De. 2010; 16(31): 3503-3518. [DOI:10.2174/138161210793563392]
2. Lodhi S, Vadnere GP, Sharma VK, Usman MDR. Marrubium vulgare L.: A review on phytochemical and pharmacological aspects. J. Intercult Ethnopharmacol. 2017; 6: 429-452. [DOI:10.5455/jice.20170713060840]
3. Sakihama Y, Cohen MF, Grace SC and Yamasaki H. Plant phenolic antioxidant and prooxidant activities: phenolisc-induced oxidative damage mediated by metals in plants. Toxicol. 2002; 177(1): 67-80. [DOI:10.1016/S0300-483X(02)00196-8]
4. Kondo T, Oyama KI and Yoshida K. Chiral molecular recognition on a supramolecular metal complex pigment from blue flowers of Salvia patents. Angew Chem. Int. Ed. Engl. 2001; 40(5): 894-897.<894::AID-ANIE894>3.3.CO;2-# [DOI:10.1002/1521-3773(20010302)40:53.3.CO;2-#]
5. Wojdyło A, Oszmiański J and Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007; 105(3): 940-949. [DOI:10.1016/j.foodchem.2007.04.038]
6. Valko M, Rhodes CJ, Moncol J, Izakovic M and Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Mini-review. Chem. Biol. Interact. 2006; 160(1): 1-40. [DOI:10.1016/j.cbi.2005.12.009]
7. Wu YY, Li W, Xu Y, Jin EH and Tu YY. Evaluation of the antioxidant effects of four main theaflavin derivatives through chemiluminescence and DNA damage analyses. J. Zheijang Univ. Sci. B. 2011; 12: 744-751. [DOI:10.1631/jzus.B1100041]
8. Winter CK and Davis SF. Organic foods. J. Food Sci. 2006; 71(9): 117-124. [DOI:10.1111/j.1750-3841.2006.00196.x]
9. Lee CH, Shin HS and Kang KH. Chemical and spectroscopic characterization of peat moss and its different humic fractions (Humin, Humic acid and fulvic acid). J. Soil Ground. Water Environ. 2004; 9(4): 42-51.
10. Gulser F, Sonmez F and Boysan S. Effects of calcium nitrate and humic acid on pepper seedling growth under saline condition. J. Environ. Biol. 2010; 31(5): 873-876.
11. Gavili E, Moosavi AA and Kamkar Haghighi AA. Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Indus. Crops Prod. 2019; 128: 445-454. [DOI:10.1016/j.indcrop.2018.11.047]
12. Gavili E, Moosavi AA and Moradi Choghamarani F. Cattle manure biochar potential for ameliorating soil physical characteristics and spinach response under drought. Arch. Agron. Soil Sci. 2018; 64(12): 1714-1727. [DOI:10.1080/03650340.2018.1453925]
13. Gavili E, Moosavi AA, Zahedifar M. Integrated effects of cattle manure-derived biochar and soil moisture conditions on soil chemical characteristics and soybean yield. Arch. Agron. Soil Sci. 2019; 65: 1758-1774. [DOI:10.1080/03650340.2019.1576864]
14. Zahedifar M and Moosavi AA. Assessing cadmium availability of contaminated saline-sodic soils subjected to biochar using the adsorption isotherm models. Arch. Agron. Soil Sci. 2020; 66(12): 1735- 1752. [DOI:10.1080/03650340.2019.1694145]
15. Zahedifar M and Moosavi AA. Modeling desorption kinetics of the native and applied zinc in biochar-amended calcareous soils of different land uses. Environ. Earth Sci. 2017; 76: 567. [DOI:10.1007/s12665-017-6895-z]
16. Zahedifar M. Sequential extraction of zinc in the soils of different land use types as influenced by wheat straw derived biochar. J. Geochem. Explor. 2017; 182: 22-31. [DOI:10.1016/j.gexplo.2017.08.007]
17. Zahedifar M. Effect of biochar on cadmium fractions in some polluted saline and sodic soils. Environ. Manage. 2020; 66: 1133-1141. [DOI:10.1007/s00267-020-01371-9]
18. Zahedifar M and Najafian Sh. Ocimum basilicum L. growth and nutrient status as influenced by biochar and potassium-nano-chelate fertilizers. Arch. Agron. Soil Sci. 2017; 63(5): 638-650. [DOI:10.1080/03650340.2016.1233323]
19. Pizzeghello D, Francioso O, Ertani A, Muscolo A and Nardi S. Isopentenyladenosine and cytokinin-like activity of different humic substances. J. Geochem. Ex. 2013; 129: 70-75. [DOI:10.1016/j.gexplo.2012.10.007]
20. Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P and Piccolo A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hort. 2015; 196: 15-27. [DOI:10.1016/j.scienta.2015.09.013]
21. Nardi S, Pizzeghello D, Muscolo A and Vianello A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002; 34(11): 1527-1536. [DOI:10.1016/S0038-0717(02)00174-8]
22. Van-Hees PAW, Jones DL, Finlay R, Godbold DL and Lundstrom US. The carbon we do not see the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol. Biochem. 2005; 37(1): 1-13. [DOI:10.1016/j.soilbio.2004.06.010]
23. Vaughan D and Linehan DJ. The growth of wheat plants in humic acid solutions under axenic conditions. Plant Soil. 2004; 44: 445-449. [DOI:10.1007/BF00015895]
24. Noroozisharaf AR and Kaviani M. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiol. Mol. Biol. Plants 2018; 24: 423-431. [DOI:10.1007/s12298-018-0510-y]
25. Nikbakht A, Kafi M, Babalar M, Xia PY, Luo A and Etemadi NA. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. J. Plant Nutr. 2008; 31(12): 2155-2167. [DOI:10.1080/01904160802462819]
26. Bekhit RS, Hassan HR, Ramadan HM and El-Anani AM. Effect of different levels and sources of nitrogen on growth, yield and quality of potatoes grown under sandy soil conditions. Ann. Agr. Sci. 2005; 43: 391-394.
27. Vioratti Telles de Moura O, Luiz Louro Berbara R, França de Oliveira Torchia D, Fernanda Oliveira Da Silva H, Augusto van Tol de Castro T, Carlos Huertas Tavares O, Fernandes Rodrigues N, Zonta E, Azevedo Santos L and Calderín García A. Humic foliar application as sustainable technology for improving the growth, yield, and abiotic stress protection of agricultural crops. A review, J. Saudi Soc. Agr. Sci. 2023; 22(8): In press. [DOI:10.1016/j.jssas.2023.05.001]
28. Preciado-Rangel P, Gaucin-Delgado JM, Salas-Perez L, Sanchez-Chavez E, Mendoza-Vllarreal R and Rodriguez Ortiz JC. The effect of citric acid on the phenolic compounds, flavonoids and antioxidant capacity of wheat sprouts. Revista de la Facultad de Ciencias Agrarias UNCuyo. 2018; 50(2): 119-127.
29. Najafian Sh, Zahedifar M and Ghasemi AR. Effect of organic and inorganic zinc foliar application on the natural product composition and antioxidant activity of lemon balm (Melissa officinalis). Iran Agr. Res. 2022; 40(2): 85-92.
30. Zahedifar M. Iron fractionation in the calcareous soils of different land uses as influenced by biochar. Waste Biomass Valor. 2020; 11: 2321-2330. [DOI:10.1007/s12649-018-0481-9]
31. Moosavi AA and Ronaghi AM. Influence of foliar and soil applications of iron and manganese on soybean dry matter yield and iron-manganese relationship in a calcareous soil. Aust. J. Crop Sci. 2011; 5(12): 1550-1556.
32. Moosavi AA and Ronaghi M. Growth and iron-manganese relationships in dry bean as affected by foliar and soil application of iron and manganese. J. Plant Nutr. 2010; 33(9): 1353-1365. [DOI:10.1080/01904167.2010.484095]
33. Najafian Sh and Zahedifar M. Productivity, essential oil components, and herbage yield, of sweet basil as a function of biochar and potassium-nano chelate. J. Essent. Oil Bear. Plant. 2018; 21(4): 886-894. [DOI:10.1080/0972060X.2018.1510793]
34. Zahedifar M and Najafian Sh. Combined effect of soil applied iron and sulfur fertilisers on monoterpene content and antioxidant activity of Satureja hortensis L. extract. Pertanika J. Trop. Agric. Sci. 2015; 38(3): 361-374.
35. Loeppert RH and Suarez DL. Carbonate and Gypsum, In: Sparks DL, Page AL, Helmke PA, Loeppert RH. (Eds.): Methods of Soil Analysis, Part 3. Chemical Methods. SSSA, ASA, Madison, WI, USA, 1996, pp: 437-474. [DOI:10.2136/sssabookser5.3.c15]
36. Sumner ME and Miller WP. Cation Exchange Capacity and Exchange Coefficients, In: Sparks DL, Page AL, Helmke PA, Loeppert RH. (Eds.): Methods of Soil Analysis, Part 3. Chemical Methods. SSSA, ASA, Madison, WI, USA, 1996; 1201-1229. [DOI:10.2136/sssabookser5.3.c40]
37. Nelson DW and Sommers LE. Total Carbon, Organic Carbon, and Organic Matter, In: Sparks DL, Page AL, Helmke PA, Loeppert RH. (Eds.): Methods of Soil Analysis, Part 3. Chemical Methods. SSSA, ASA, Madison, WI, USA, 1996; 961-1010. [DOI:10.2136/sssabookser5.3.c34]
38. Bremner JM. Nitrogen total. In: Sparks DL, Page AL, Helmke PA, Loeppert RH. (Eds.): Methods of Soil Analysis, Part 3. Chemical Methods. SSSA, ASA, Madison, WI, USA, 1996; 1085-1121. [DOI:10.2136/sssabookser5.3.c37]
39. Olsen SRC, Cole CV, Watanable FS, Dean LA. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA Circular 939. Washington (DC): US Government Printing Office. 1954.
40. Lindsay WI and Norvell WA. Development of a DTPA soil test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978; 42(3): 421-448. [DOI:10.2136/sssaj1978.03615995004200030009x]
41. British Parmacopoeia B. Herbal drugs and herbal drug preparation kelp, V. III. The Stationary Office, London. 2009.
42. Zhou Z, Deng Z, Liang S, Zou X, Teng Y, Wang W and Fu L. Quantitative analysis of flavonoids in fruiting bodies of Sanghuangporus using ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Molecules. 2023; 28(13): 5166. [DOI:10.3390/molecules28135166]
43. Alizadeh Ahmadabadi A, Khorasani Nejad S and Hemati Kh. The effect of low irrigation and humic acid on morphological characteristics and phytochemical irrigation and Echinacea (Echinacea purpurea L.) root. J. Crop. Improvement. 2017; 19(1): 1-14.
44. Abedini T, Moradi P and Hani A. Effect of organic fertilizer and foliar application of humic acid on some quantitative and qualitative yield of Pot marigold. J. Novel. Appl. Sci. 2015; 4(10): 1100-1103.
45. Nguyen PM, Kwee EM and Niemeyer ED. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem. 2010; 123(4): 1235-1241. [DOI:10.1016/j.foodchem.2010.05.092]
46. Reda F, Abdel-Rahim EA, El-Baroty GSA and Ayad HS. Response of essential oils, phenolic components and polyphenol oxidase activity of thyme (Thymus vulgaris L.) to some bioregulators and vitamins. Int. J. Agri. Biol. 2005; 7(5): 735-739.
47. Asami DK, Hong YJ, Barrett DM and Mitchell AE. Comparison of the total phenolic and ascorbic acid content of freeze-dried and airdried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agr. Food Chem. 2003; 51(5): 1237-1241. [DOI:10.1021/jf020635c]
48. Olsson ME, Andersson CS, Oredsson S, Berglund RH and Gustavsson K. Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries. J. Agric. Food Chem. 2006; 54(4): 1248-1255. [DOI:10.1021/jf0524776]
49. Sousa C, Valentao P, Range J, Lopes G, Pereira JA, Ferreres F, Seabra RM and Andrade PB. Influence of two fertilization regimens on the amounts of organic acids and phenolic compounds of tronchuda cabbage (Brassica oleracea L. Var. costata DC). J. Agric. Food Chem. 2005; 53(23): 91280-9132. [DOI:10.1021/jf051445f]
50. Karakurt Y, Unlu H, Halime U and Padem H. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric. Scand. B Soil Plant Sci. 2009; 59(3): 233-237. [DOI:10.1080/09064710802022952]
51. Rivas-San Vicente M and Plasencia J. Salicylic acid beyond defense: its role in plant growth and development. J. Experim. Bot. 2011; 62(10): 3321-3338. [DOI:10.1093/jxb/err031]
52. Rimmer DL. Free radicals, antioxidants, and soil organic matter recalcitrance. Eur. J. Soil Sci. 2006; 57(2): 91-94. [DOI:10.1111/j.1365-2389.2005.00735.x]
53. Wang SY and Lin SS. Compost as soil supplement enhanced plant growth and fruit quality of strawberry. J. Plant Nutr. 2002; 25(10): 2243-2259. [DOI:10.1081/PLN-120014073]
54. Aminifard M, Aroiee H, Nemati H, Azizi M and Jaafar HZE. Fulvic acid affects pepper antioxidant activity and fruit quality. Afr. J. Biotechnol. 2012; 11(68): 13179-13185. [DOI:10.5897/AJB12.1507]
55. Davarpanah S, Tehranifar A, Davarynejad GH, Abadía J and Khorasani R. Effect of humic acid on some physical and chemical characteristics of pomegranate (Punica granatum cv. Ardestani). Plant Prod. Technol. 2018; 10(1): 69-81.
56. Ahn T, Oke M, Schofield A and Paliyath G. Effects of phosphorus fertilizer supplementation on antioxidant enzyme activities in Tomato fruits. J. Agr. Food Chem. 2005; 53(5): 1539-1545. [DOI:10.1021/jf040248y]
57. Moukette BM, Pieme CA, Njimou JR, Nya Biapa CP, Marco B and Ngogang JY. In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biol. Res. 2015; 48:15. [DOI:10.1186/s40659-015-0003-1]
58. Zahedifar M and Najafian Sh. Evaluation of essential oil composition and antioxidant activity of yarrow as influenced by foliar application of humic substance-based products: Using multivariate exploratory method. Sci. Hort. 2023; 308: 111557. [DOI:10.1016/j.scienta.2022.111557]
59. Erkan N, Akgonen S, Ovat S, Goksel G and Ayranci E. Phenolic compounds profile and antioxidant activity of Dorystoechas hastata L. Boiss et Heldr. Food Res. Int. 2011; 44(9): 3013-3020. [DOI:10.1016/j.foodres.2011.07.015]
60. Yang Y, Hayden MR, Sowers S, Bagree SV and Sowers JR. Retinal redox stress and remodeling in cardiometabolic syndrome and diabetes. Oxidative Medicine and Cellular Longevity 2010; 3(6): 392-403. [DOI:10.4161/oxim.3.6.14786]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.